• Title/Summary/Keyword: drenching application

Search Result 31, Processing Time 0.032 seconds

Enhancement of Biocontrol Activity of Serratia plymuthica A21 -4 Toward Phytophthora Blight of Pepper by Amendment of Nutritional Condition

  • Shen, Shun-Shan;Kim, Chang-Guk;Park, Chang-Seuk
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.96.1-96
    • /
    • 2003
  • Serratia plymuthim A21-4 strongly inhibits the mycelial growth, zoospore formation, and cystospore germination of Phytophthor spp and Pythium species. The bacterial isolate produced antifungal substance and chitinase. The bacteria also enhanced to plant growth remarkably in low nutritional condition. The application of cell suspension of A21-4 to pepper seedlings in greenhouse experiments and soil drenching in farmer's field was proved successfully to control the phythophthora blight of pepper. For the effective control, however, relatively high density of cell number(10$\^$9/cfu/$m\ell$) is required. Density effect was similar in plant growth promoting activity of A21-4. Though this investigation we improved the problem with changes of culture condition of bacteria and some nutritional amendment.

  • PDF

Damping-off Disease in Mulberry Seedlings and Its Management

  • Naik, V.Nishitha;Sharma, D.D.;Chowdary, N.B.;Mala, V.R.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.8 no.2
    • /
    • pp.201-205
    • /
    • 2004
  • During the routine survey, the mortality of mulberry seedlings was noticed due to damping-off disease. The disease recognized by rotting of emerged seedlings near the soil line (just below the soil level) resulting in collapse of the seedlings. Two fungi were isolated from affected samples and identified as Alternaria alternata (Fr.) Keissler and Fusarium solani (Mart.) Sacc. Both the fungi were found to be responsible in causing pre and post emergence damping-off of seedlings in mulberry. For management of the disease, an experiment was conducted using fungicides. These fungicides were applied as seed treatment; soil drenching and foliar spray alone and in combination. Among the different treatments, integration of seed treatment and soil application of Dithane M-45 (Mancozeb 75% WP) + Bavistin (Carbendazim 50% WP) followed by foliar spray of these fungicides (after 35 days of sowing) resulted in better survivability of seedlings (93.3 %) on $90^th$ day and controlled the pre and post emergence damping off by 100 and 89.5%, respectively over the check.

Effect of Metalaxyl on Controlling Phytophthoyra Disease of Korea Ginseng (인삼역병에 대한 Metalalryl의 방제효과)

  • 유연현;오승환
    • Journal of Ginseng Research
    • /
    • v.9 no.2
    • /
    • pp.163-169
    • /
    • 1985
  • The efficacy of fungicides was compared for control of root rot as well as leaf blight caused by Phytophthora cactorum on ginseng plants. Growth of P. cactorum in rlitro was completely or highly inhibited by metalaxyl, tetracyclin, captafol, carbendazim, and thiophanate + thiram. In field trials, the disease was significantly reduced not only in the root rot but also in the leaf blight when metalaxyl was applied at 4.17 mg a.i. per plant for soil drenching and 1.25 mg a.i. for foliage application. Also captafol was effective on control of the leaf blight but its effect was inferior to that of metalaxyl. Metalaxyl lost its effectiveness in vivo between the 5th and 7th week after soil wren ching. Phytotoxicity was, however, observed on 2 years old ginseng plants when metalaxyl was drenched at 8 mg a.i. while no phytotoxic symptom was developed on 2 years old ginseng plants at 4k mg a.i. and 3 years old at 16 mg a.i. per plant, respectively.

  • PDF

A New Formulation System for Slow Releasing of Phosphorous Acid in Soil for Controlling Phytophthora Diseases

  • Park, Hae-Jun;Kim, Sung-Ho;Jee, Hyeong-Jin
    • The Plant Pathology Journal
    • /
    • v.23 no.1
    • /
    • pp.26-30
    • /
    • 2007
  • Phosphorous acid is known to effectively control various Oomycetes diseases. The phosphoric acid moves upward and downward through the xylem and phloem in plants. The sustainable forms of the slow releasing chemical in rhizosphere would be ideal to be up-taken by plants. Therefore, we developed a new system for phosphorous acid formulation using a carrier coated with polysaccharides. When the product was applied in rhizosphere, the adequate amount of phosphorous acid was consistently released up to 4 weeks in rhizosphere soils. While soil drenching with phosphorous acid at 1,000 ${\mu}g/ml$ and metalaxyl at 150 ${\mu}g/ml$ were not effective to control pepper Phytophthora blight for 4 weeks, direct application of our formulation product around basal stem of pepper plants resulted in excellent disease control effect against Phytophthora blight over 4 weeks. The application of 4 g of our product per plant was optimum to control the disease, and 8 g product/plant did not cause phytotoxicity. Based on the results, we conclude that the applications of the formulation product once or twice during cropping season can control Phytophthora diseases on various crops.

Promotive Effects of Geraniol on Radicle Growth of Several Vegetables and Leaf Growth of Brassica campestris (Geraniol의 채소 작물 유근생장 및 배추 생장 촉진효과)

  • Choi, Geun-Hyoung;Jeong, Dong-Kyu;Park, Byung-Jun;Cho, Nam-Jun;Hong, Jin-Hwan;Kim, Jin-Hyo
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.4
    • /
    • pp.399-401
    • /
    • 2015
  • This study investigated the plant growth promoting activity of geraniol on Chinese cabbage (Brasscia campestris ssp. Pekinensis Rupr.), Pak Choi (Brassica rapa L.), Crown daisy (Chrysanthemum coronarium L.), Iceberg lettuce (Lactuca sativa L.) and Leaf perilla (Perilla frutescens Britt.). Geraniol at 0.5 to $10mg\;L^{-1}$ promoted radical growth of Chinese cabbage Pak Choi, Crown daisy, Iceberg lettuce and leaf perilla by >30%. In the pot experiments, geraniol treatment at $20mg\;L^{-1}$ by drenching increased up to 190% of the aerial part growth promotion. By comparison, foliar application showed 124% promoting activity only at $100mg\;L^{-1}$.

Effect of Uniconazole Treatment on Plant Tolerance to $SO_2$ Injury and Enzymatic Activity and Platanus Occidentalis (Uniconazole 처리가 양버즘나무의 $SO_2$ 내성증대 및 효소의 활성에 미치는 영향)

  • Cho, Jeong-Hee;Ku, Ja-Hyeong;Choi, Jong-Myung
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.4
    • /
    • pp.479-487
    • /
    • 1996
  • This study was conducted to investigate the phytoprotective effects of uniconazole on $SO_2$ injury in P. occidentalis. The detoxification role of free radical scavengers such as superoxide dismutase (SOD) and peroxidase (POD) was also examined under the conditions of combined treatment with uniconazole and diethyldithiocarbamate (DDTC). Uniconazole drenching significantly reduced the occurrence of visible injuries. Though shoot length, leaf area, and T/R rate were greatly decreased by uniconazole application, the tolerance to $SO_2$ was enhanced through increased chlorophyll content and activities of SOD and POD. Spray of DDTC decreased the activity of SOD and POD resulting in the increase of visible injury. Plant tolerance to $SO_2$ induced by uniconazole application was reduced by the additional application of DDTC. These results indicate that plant tolerance to $SO_2$ induced by uniconazole is associated with the reduction of vegetative growth as well as the increase in free radical scavengers such as SOD and POD.

  • PDF

Plant Growth-Promoting Rhizobacteria Stimulate Vegetative Growth and Asexual Reproduction of Kalanchoe daigremontiana

  • Park, Yong-Soon;Park, Kyungseok;Kloepper, Joseph W.;Ryu, Choong-Min
    • The Plant Pathology Journal
    • /
    • v.31 no.3
    • /
    • pp.310-315
    • /
    • 2015
  • Certain bacterial species associate with plant roots in soil. The plant growth-promoting rhizobacteria (PGPR) stimulate plant growth and yield in greenhouse and field. Here, we examined whether application of known bacilli PGPR strains stimulated growth and asexual reproduction in the succulent plant Kalanchoe daigremontiana. Four PGPR strains B. amyloliquefaciens IN937a, B. cereus BS107, B. pumilus INR7, and B. subtilis GB03 were applied to young plantlets by soil-drenching, and plant growth and development was monitored for three months. Aerial growth was significantly stimulated in PGPR-inoculated plants, which was observed as increases in plant height, shoot weight, and stem width. The stimulated growth influenced plant development by increasing the total number of leaves per plant. Treatment with bacilli also increased the total root biomass compared with that of control plants, and led to a 2-fold increase in asexual reproduction and plantlet formation on the leaf. Collectively, our results firstly demonstrate that Bacillus spp. promote vegetative development of K. daigremontiana, and the enhanced growth stimulates asexual reproduction and plantlet formation.

Growth Promotion in Red Pepper and Tomato Seedlings by Fermented Liquid Fertilizers and Elution of Mineral Nutrients by Extraction Methods (발효액비별 고추와 토마토 육묘 생육 촉진 및 추출방법별 무기양분 용출)

  • Jang, Se Ji;Kuk, Yong In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.2
    • /
    • pp.130-141
    • /
    • 2020
  • The purpose of this study was to determine which fermented liquid fertilizer and application method yields the greatest amount of growth in red pepper (Capsicum annuum L.) and tomato (Lycopersicon esculentum MILL.) plants. Additionally, we investigated which extraction methods produce the most effective fertilizer with the highest levels of mineral nutrients. The liquid fertilizers used in this study were made from fish, bone and fish meal, red pepper leaves, and oil cake, and were extracted using fermentation or water and boiled water. In tomato plants, foliar-application of fermented fertilizer is known to promote more growth than application by drenching, regardless of the number of treatments (once or twice). In our studies, however, drenching with fertilizer promoted growth more effectively than foliar-application in red pepper plants. Studies in both tomato and red pepper have shown that the number of treatments does not significantly alter growth. Liquid fertilizers produced by a fermentation-extraction method promoted greater levels of growth in tomato compared to red pepper, and growth was greater when fertilizers were applied 20 (rather than 40) days post-sowing. Red pepper and tomato shoot fresh weight were affected more by fermented fertilizers than plant height 20 days post-sowing. In red pepper, we observed increased shoot fresh weight when using fermented liquid fertilizers with concentrations of 0.1% or greater. Tomato shoot fresh weight increased similarly in response to fermented fertilizer treatments at the same concentration levels, except those derived from fish. Fermented fish liquid fertilizer was only effective in increasing tomato shoot fresh weight in concentrations exceeding 1%. Red pepper and tomato shoot fresh weight also increased more than plant height in our studies using fermentation liquid fertilizers at 40 days after sowing. Red pepper fresh weight increased with application of bone + fish meal, red pepper leaf, and oil cake fertilizers at concentrations of 0.1%, but not with fish liquid fertilizer in concentrations under 0.5%. Shoot fresh weight in tomato increased with all liquid fertilizers. Growth in red pepper and tomato may be influenced by different kinds of fertilizers due to combinations of macro- and micro-nutrients, or specific macro-nutrients such as nitrogen, phosphoric acid, and potassium. The mineral nutrients found in fish, bone and fish meal, red pepper leaves, and oil cake were not easily extracted by fermentation; thus, liquid fertilizers made using water and boiled water methods more effectively promoted growth in red pepper and tomato due to the larger amounts of macronutrients eluted.

Controlling activity of Bion-M against bacterial spot caused by Xanthomonas euvesicatoria (고추 세균점무늬병에 대한 Bion-M의 방제 효과)

  • Kim, A-Hyeong;Yeon, Cho-Long;Kim, Joo-Hyung;Kim, Heung-Tae
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.2
    • /
    • pp.171-177
    • /
    • 2012
  • Pepper seedlings of 6-leaf stage were inoculated with cell suspension of Xanthomonas euvesicatoria 1523 7 days after the application of Bion-M by soil-drenching. Disease severity in the treatment with 20 ${\mu}g\;mL^{-1}$ of acibenzolar-S-methyl, with which Bion-M was composed, was 19%, whereas that of the untreated control was 75%. The resulting control value of acibenzolar-S-methyl was calaulated as much as 74.7%. The control value of acibenzolar-S-methyl was dependent with the applied concentrations and ranged 29.3% to 49.3% at 4.0 and 0.8 ${\mu}g\;mL^{-1}$ of acibenzolar-S-methyl, respectively. Phytotoxicity was observed at 20.0 ${\mu}g\;mL^{-1}$, as lower leaves became to be yellowed and defoliated. The cell density of inoculum suspension of X. euvesicatoria 1523 affected the control value of acibenzolar-S-methyl. With optical density (O.D.) of 0.5 the control value of 4.0 ${\mu}g\;mL^{-1}$ of acibenzolar-S-methyl was 86.0%. However, the control value improved as high as 97.8% at the O.D. value of 0.1. The control value was 75.0% in adult plant of pepper, when acibenzolar-S-methyl was treated by soil-drenching 7 days before inoculation with cell suspension of X. euvesicatoria 1523. The control effect of acibenzolar-S-methyl on pepper bacterial spot was obtained in pepper field, showing that the control value at 10.0 ${\mu}g\;mL^{-1}$ was 71.2%.

Rice (Oryza sativa L.) Growth Promotion by Various Plant Extracts Produced Using Different Extraction Methods

  • Ei Ei;Hyun Hwa Park;Yong In Kuk
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.53-53
    • /
    • 2022
  • Modem agricultural production needs to provide sustainable management practices that are eco-friendly and low cost. Plant extracts are a cost-effective and environmentally friendly alternative to synthetic plant growth regulators. This study was therefore carried out to investigate the effects of various plant extracts produced using different extraction methods on the vegetative growth of rice under laboratory and greenhouse conditions. For this study, seventeen plant extracts were made from plant species such as leaves of M. arvense, C. asiatica, M. oleifera, V. radiata, V. unguiculate, P. guajava, A. vera, and A. tuberosum, aboveground plant parts of C. rotundus, M. sativa, and P. frutescens, roots of R. undulatum, tubers of A. sativum, leaves and stems of G. max (cv. Taegwang) as well as rice straw and hulls (cv. Hopyeong). As a test crop, we applied these extracts to rice plants. For the purpose of making our extracts, some plant materials and species were collected in fields and others were purchased from Chonnam Hanyaknonghyup Cooperation (South Korea). Leaves, roots, and aboveground plant parts of plant species were dried, ground, extracted (water, boiling water and ethanol) and fermented. Rice growth promotion effects were determined using plant extracts at 0, 0.05, 0.1, 0.5, and 1% concentrations under petri dish conditions. Seven selected plant extracts were applied to rice seeds with soil drench application or seedling at 3-4 leaf stages with soil and foliar applications under greenhouse conditions. For comparison with extracts, we used urea at 0.6%. Of the 17 water extracts used in this study, 10 extracts reduced rice growth, but the other 7 extracts (P. guajava, A. vera, A. tuberosum, M. sativa, A. sativum, and G. max) increased growth by 40-60% on compared to the control in Petri dish bioassay. Thus, these 7 extracts were selected for further study. Under greenhouse conditions, rice growth also increased by 20-40% when the same 7 extracts were applied to rice seeds using soil drench application. Furthermore, at the 3-4 leaf stage rice growth also increased 30-80% or 30-60% when the same 7 extracts were applied using soil and foliar applications. Overall, the 7 extracts produced higher rates of growth promotion when soil drench application was used than when foliar application was used. In the case of boiling water and ethanol extracts, rice growth increased only 20% in response to both soil drench and foliar application of the same 7 extracts. Rice growth promotion was greater when extracts were produced using water extraction method than boiling water and ethanol extraction methods. Most notably, the 7 water extracts used in this study produced higher rates of growth promotion than urea at 0.6% which is typically used for crop growth promotion. Overall, the 7 water extracts when applied using soil drenching method can be used as effective growth promotors of rice in organic agriculture.

  • PDF