• Title/Summary/Keyword: dredged soils

Search Result 115, Processing Time 0.033 seconds

A Study on the Soil Conversion Factor of Underwater Soils (수중토사의 토량환산계수에 관한 연구)

  • Park, Sung-Sik;Bae, Yeon-Hoi;Moon, Hong-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.7
    • /
    • pp.5-12
    • /
    • 2015
  • In this study, the deposition of dredged soils from domestic rivers is simulated in the laboratory using a small soil box. In the tests, small sand with 0.002-0.85 mm, large sand with 0.85-2 mm, and gravel 4.75-5.6 mm are air or water-pluviated into the box. Such various deposition processes are simulated and their dry densities are measured. While dredging or piling such soils, their volume may change. The loss of such soils is calculated by a soil conversion factor C. The C value was determined as 0.91 for small sand, 0.96 for large sand, and 0.91 for gravel. The drainage through soil piles may occur and result in effective stress increase. This may cause the volume change of soils and in order to consider such effect it is necessary to recalculate C values. As a result, dry density increased by 5-12% when the drainage effect is considered. When the drainage effect is considered, the value of soil conversion factor C was 0.81 for small sand, 0.92 for large sand, and 0.82 for gravel. Eventually, the C value decreased up to 4-12%.

Analysis Method for Non-Linear Finite Strain Consolidation for Soft Dredged Soil Deposit -Part I: Parameter Estimation for Analysis (초연약 준설 매립지반의 비선형 유한변형 압밀해석기법 -Part I: 해석 물성치 평가)

  • Kwak, Tae-Hoon;Lee, Chul-Ho;Lim, Jee-Hee;An, Yong-Hoon;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.9
    • /
    • pp.13-24
    • /
    • 2011
  • The renowned Terzaghi's one-dimensional consolidation theory is not applicable to quantification of time-rate settlement for highly deformable soft clays such as dredged soil deposits. To deal with this special condition, a non-linear finite strain consolidation theory should be adopted to predict the settlement of dredged soil deposits including self-weight and surcharge-induced consolidation. It is of importance to determine the zero effective stress void ratio ($e_{00}$), which is the void ratio at effective stress equal to zero, and the relationships of void ratio-effective stress and of void ratio-hydraulic conductivity for characterizing non-linear finite strain consolidation behavior for deformable dredged soil deposits. The zero effective stress void ratio means a transitional status from sedimentation to self-weight consolidation of dredged soils. In this paper, laboratory procedures and equipments are introduced to measure such key parameters in the non-linear finite strain consolidation analysis. In addition, the non-linear finite strain consolidation parameters of the Incheon clay and kaolinite are evaluated with the aid of the proposed methods in this paper, which will be used as input parameters for the non-linear finite strain consolidation analyses being performed in the companion paper.

A Case Study on amphibious barge on soft soils (연약지반상에서 수륙양용선을 활용한 지반조사 사례)

  • Yun, Tae-Jung;Cha, Young-Man;Lee, Keun-Ha;Choi, Chung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1241-1244
    • /
    • 2005
  • In this case study, the field investigation work on soft soils like a reclamation area with dredged-clay or intertidal mud flat which has not enough strength to resist the load of surveying machines, the amphibious barge(modified AMFIROL) which travels on land and water was adopted to the field investigation work. Despite of slight increase of cost, it was found that the adoption of amphibious barge in field investigation could improve the quality of test results and avoid the waste of time and some effort.

  • PDF

Consolidation Characteristics of Clay and Pond Ash Soil Mixture (점토와 매립회 혼합토의 압밀특성)

  • Chae, Deok-Ho;Yune, Chan-Young;Kim, Kyoung-O;Cho, Wan-Jei
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.45-54
    • /
    • 2011
  • In this study, the consolidation characteristics are investigated on the artificial soil mixture of kaolinite, fine soils representing dredged soils and reclaimed coal ash from the ash ponds. A large sedimentation chamber was designed and manufactured to produce the artificial soil mixture with uniform stress history. In order to examine the consolidation characteristics in lateral and vertical directions, standard consolidation and Rowe Cell tests were performed. From the results of standard consolidation tests, the artificial soil mixture with coal ash showed lower compressibility and the larger consolidation coefficients enough to aid in early stabilization of the reclaimed sites compared with the kaolinite only. Also, in order to examine the consolidation characteristics when applying vertical drains, the drainage material was installed and tested in the Rowe Cell. The Rowe Cell test results show that the artificial soil mixture yields higher coefficient of consolidation. Thus, the application of artificial soil mixture on the reclaimed sites can shorten the consolidation time.

Behavior Analysis of the Saemangum Waterproof Embankment Applying Geotextile Tube Method and Example of Field Test - In Concentration of Reviewing the Construction and Design Process - (지오텍스타일 튜브공법을 적용한 새만금방수제의 거동분석 및 시험시공 사례 - 설계과정 및 시공성 검토 중심으로 -)

  • Park, Jong Gun;Ko, Jeong Hee;Park, Tae Seup
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.155-165
    • /
    • 2013
  • Recently, geotextile tube method can be widely applied to the river, costal and marine in the construction field, such as embankment, groin, breakwater, dyke structures and so on, in advanced countries of the world. And that has been constructed at the temporary road for incheon, ilsan-bridge construction and coast erosion protection in republic of korea. Geotextile tube is a tube shaped geotextile product and hydraulic pumping filled with dredged soils. In this paper, the numerical analysis was performed to investigate the behavior of geotextile tube with various properties of material character, shape condition, construction pressure and so on. Also, the field test was conducted in order to identify the construction ability of Samangum waterproof embankment using geotextile tube. According to the applied of field test, geotextile tube was 65 m long and 4.0 m diameter. Also, the permeability coefficient and ultimate tensile strength of geotextile tube is $1.6{\times}10^{-1}$ cm/sec and 205.26 kN/m, respectively. As a result of filed test, when filled, geotextile tube does not attain the same as its unfilled theoretical diameter, but may reach approximately of 55 percent of the theoretical diameter. At the time, geotextile tubes were 12.56 m in circumference and filled to a height of about 2.2 m. This paper presents case study on field application and behavior analysis of the saemangum waterproof embankment donggin 1 division construction using geotextile tube.

Physico-Chemical Properties of Soils at the Ground of Landscape Planting in Reclaimed Land from the Sea (임해매립지의 식재지반별 토양 물리·화학적 특성)

  • Kim, Do-Gyun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.4
    • /
    • pp.12-18
    • /
    • 2001
  • This study was carried out to analyze physico-chemical properties of soils at the ground of landscape planting in reclaimed land from the sea on Kwangyang Bay, South Korea. Physico-chemical properties of soils at each planting grounds were tested by ANOVA and were significantly(P<0.01) different. The difference came from the soil properties of the covered soil, the disturbance applied to the soil with land use and the accumulation of organic matter after landscape planting. Soil hardness, pH, ECe, Na and K level were in a stable condition at high then low of ground height for landscape planting. Organic matter accumulation was greater at lower planting grounds then top and slope ground of big mounding. The planting grounds of favorable growth for landscape trees were determined as following order : the slope ground and the top ground of big mounding>the ground of medium mounding>the coved ground of improve soil>the lower ground of big mounding>the filled ground of improve soil.

  • PDF

A Study of Relationship Between Engineering and Germination Characteristics of Stabilized Soils with Various Organic Contents (유기질 함량에 따른 고화토의 역학적 특성과 식생발아 특성과의 관계 분석)

  • Yun, Daeho;Kim, Yuntae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.12
    • /
    • pp.43-51
    • /
    • 2014
  • Organic matter in dredged soil has a lot of engineering problem in ground including a large settlement, crack propagation, low bearing capacity and low friction angle. From an agricultural point of view, however, organic matter contributes greatly soil quality and plant health. This paper investigated the relationship between engineering and germination characteristics of stabilized mixture consisting of different ratios of organic content (0 %, 10 %, 20 %, 30 %) for recycling dredged soil including organic matter. Several series of laboratory tests such as flow test, unconfined compressive test and consolidation test were performed to find out engineering characteristics. pH, percent of germination and growth of plants were also measured to investigate the germination characteristics. The experimental results indicated that, as organic content increased, unconfined compressive stress decreased and compression and swelling indices increased. However, percent of germination and plant growth increases as organic content increases.

RUBBER INCLUSION EFFECTS ON MECHANICAL PROPERTIES OF RUBBER-ADDED COMPOSITE GEOMATERIAL

  • Kim, Yun-Tae;Gang, Hyo-Seb
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.129-134
    • /
    • 2010
  • This paper investigates effects of rubber inclusion on the strength and physical characteristics of rubber.added composite geomaterial (CGM) in which dredged soils, crumb rubber, and bottom ash are reused for recycling. Several series of test specimens were prepared at 5 different percentages of rubber content (i.e. 0%, 25%, 50%, 75%, and 100% by weight of the dry dredged soil) and three different percentages of bottom ash content (i.e. 0%, 50% and 100% by weight of the dry dredged soil). The mixed soil specimens were subjected to unconfined compression test and elastic wave test to investigate their unconfined compressive strengths and small strain properties. The values of bulk unit weight of the CGM with bottom ash content of 0% and 100% decrease from 14kN/$m^3$ to 11kN/$m^3$ and 15kN/$m^3$ to 12kN/$m^3$, respectively, as rubber content increases, because the rubber had a specific gravity of 1.13. The test results indicated that the rubber content and bottom ash content were found to influence the strength and stress-strain behavior of CGM. Overall, the unconfined compressive strength, and shear modulus were found to decrease with increasing rubber content. Among the samples tested in this study, those with a lower rubber content exhibited sand-like behavior and a higher shear modulus. Samples with a higher rubber content exhibited rubber-like behavior and a lower shear modulus. The CGM with 100% bottom ash could be used as alternative backfill material better than CGM with 0% bottom ash. The results of elastic wave tests indicate that the higher rubber content, the lower shear modulus (G).

  • PDF

Mechanical Properties of Waste Tire Powder - Added Lightweight Soil (폐타이어 분말을 이용한 혼합경량토의 역학적 특성 연구)

  • Kim, Yun Tae;Kang, Hyo Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4C
    • /
    • pp.247-253
    • /
    • 2008
  • This paper investigates the mechanical characteristics of waste tire powder-added lightweight soil in which dredged soils, waste tire powder and bottom ash were reused. In this study, 5 groups of soil samples were prepared with varing contents of waste tire powder ranged from 0% to 100% at 25% intervals by the dredged soil weight. The mixed soil samples were subjected to unconfined compression and elastic wave tests to investigate their unconfined compressive strengths and dynamic properties. Test results showed that the unconfined compressive strength and unit weight decreased as the waste tire powder contents increased, but axial strain at failure increased. Also stress-strain relationship of waste tire powder-added lightweight soil showed a ductile behavior rather than a brittle behavior. The result of elastic wave tests indicated that the higher waste tire powder content, the lower elastic wave velocity and the lower shear modulus (G).

Evaluation of Constitutive Relationships and Consolidation Coefficients for Prediction of Consolidation Characteristics of Dredged and Reclaimed Ground (준설매립지반의 압밀거동 예측을 위한 구성관계식 산정 및 압밀정수 평가)

  • Jun, Sanghyun;Yoo, Namjae;Park, Byungsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.6
    • /
    • pp.31-41
    • /
    • 2008
  • Consolidation characteristics of reclamated ground with dredged soil and methods of evaluating them are investigated in this paper. For a dredged and reclamated ground with a very high water content, self-weight consolidation being progressed, its consolidation characteristics are difficult to find since it is almost impossible to have a undisturbed sample. In order to overcome such a problem, methods of laboratory tests with disturbed sample were studied to obtain consolidation parameters required to analyze consolidation settlement in practices, using the conventional infinitesimal consolidation theory, were evaluated by carrying out various laboratory tests with disturbed soils such as oedometer test, constant rate of deformation test, Rowe-cell tests with ring diameters of 60 mm, 100 mm and 150 mm and the centrifuge model tests with 40 g-levels. Constitutive relations of void ratio - effective vertical stress - permeability were evaluated by using the inverse technique implemented with the finite strain consolidation theory and results of centrifuge model tests. Design soil parameters related to consolidation such as compression index, swelling index, coefficient of volume change and vertical and horizontal consolidation coefficients were proposed properly by analyzing the various test results comprehensively.

  • PDF