• Title/Summary/Keyword: drawing stress

Search Result 165, Processing Time 0.027 seconds

Estimation of Fatigue Life in Butt-Welded Zone of SM45C Steel Rod (강 봉(SM45C) 맞대기 용접부의 피로수명 평가)

  • Oh, Byung-Duck;Lee, Yong-Bok
    • Journal of Welding and Joining
    • /
    • v.26 no.3
    • /
    • pp.45-50
    • /
    • 2008
  • SM45C steel rods being used generally for power transmission shafts and machine components was selected and welded by Butt-GMAW(Gas Metal Arc Welding) method. An estimation of fatigue life was studied by constructing S-N curve. Fatigue strength of base metal zone showed higher values than one of weld zone in low cycles between $10^4$ and $10^6$cycles. However, significant decrease in fatigue strength of base metal was found around $10^6$cycles, which were almost same as one of heat affected zone. This decrease was attributed that initial residual stress of the steel rods distributed by drawing process was diminished by continually applied load, and resulted in softening of base metal. The fatigue limit of the weld zone was highest in the boundary between deposited metal zone and heat affected zone, and followed by in the order of deposited metal zone, base metal zone, and heat affected zone. Based on these results, it is revealed that the stress for safety design of machine components using SM45C butt-welded steel rods must be selected within the region of the lowest fatigue limit of heat affected zone.

Evaluation of Characteristic for SS400 and STS304 Steel by Weld Thermal Cycle Simulation - 3rd Report: Residual Stress and Ultrasonic Parameter (용접열사이클 재현에 의한 SS400강 및 STS304강의 특성 평가 - 제3보: 잔류응력과 초음파 파라미터)

  • Ahn, Seok-Hwan;Choi, Moon-Oh;Jeong, Jeong-Hwan;Kim, Sung-Kwang;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.27-34
    • /
    • 2008
  • The temperature distribution in the weldment is not uniform because a weldment is locally heated. Thermal plastic deformation results from the local expansion and shrinkage by the heating and cooling of metal. Therefore, residual stresses and distortion occur in the weldment. In this study, we had conducted on the weld thermal cycle simulation that is supposed as the HAZ on SS400 steel and STS304 steel. The residual stresses that were obtained from the drawing and the weld thermal cycle simulation were estimated by X-ray diffraction. We also carried out ultrasonic test for the weld thermal cycle simulated specimens, and then conducted on nondestructive evaluation by the ultrasonic parameters obtained ultrasonic test. From the results, residual stresses of weld thermal cycle simulated specimens after the residual stress removal heat treatment are lower than that of the drawing.

Evolution of Crystal Structure by Post-extension in Nylon 56 Fibers (연신에 따른 나일론 56 섬유의 결정 구조 및 수소결합 변화)

  • Jo, Kuk Hyun;Cho, Jung Hyeong;Kim, Hyo Jung;Lee, Hyun Hwi
    • Textile Coloration and Finishing
    • /
    • v.28 no.1
    • /
    • pp.33-39
    • /
    • 2016
  • The crystal structure of nylon 56 fibers post extended by drawing process was investigated by synchrotron x-ray scattering measurement. In as-cast fiber, distinct (004) and (020) diffraction peaks were observed and they were related to initial metastable alignment of nylon molecules. With increase in the drawing ratio, (110) peak intensity was increased in vertical direction with decreasing (020) peak. At the same time, (004)' peak evolved position tilted to 29 degrees from the (004) peak. This evolution is directly related to stable crystalline phase of nylon 56 originated from additional formation of hydrogen bondings between N-H and C=O by post drawing process. We also compared density variation, stress-strain curves of the fiber as a function of drawing ratio and strain. The variations of density and tanacity also supported the increase of stable structure of nylon 56.

A Study on the Behavior of Wrinkling in the Square Cup Deep Drawing of Al Alloy (Al합금의 사각용기 딥드로잉시 주름의 거동에 관한 연구)

  • Ko, Dae-Lim;Jung, Dong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.3
    • /
    • pp.276-282
    • /
    • 2009
  • Wrinkling in the flange and wall of a deep-drawn part is one of the major defects in sheet metal processes. Wrinkling is influenced by many factors, such as material properties, shape of the body, forming conditions, stress state and thickness, etc. It is difficult to analyze the wrinkling initiation and growth according to the factors because the effects of the factors are very complex and the wrinkling behavior may show wide variation even though small deviation of factors. In this study, the influence of wrinkling parameters, such as material properties (Al1050, Al5052), the blank holding force and the drawing depth on the wrinkling initiation and growth is investigated by using the experimental method and the dynamic explicit finite element analysis. From the results, it is shown that the dynamic explicit finite element method can be used effectively to prevent the wrinkling problems advancely in the deep drawing process. Also, there is a good agreement between the experimental result and the dynamic explicit finite element analysis.

Study on commercialization process of Bi-B223 HTS tape (Bi-2223 고온초전도 선의 상용화 공정 연구)

  • 하동우;김상철;오상수;하홍수;이동훈;양주생;황선역
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.1
    • /
    • pp.1-5
    • /
    • 2004
  • Long length of Bi-2223/Ag superconducting wives were fabricated by stacking and drawing process with advanced heat-treatment schedules. Intermediate annealing was carried out to increase the homogeneity and uniformity of the superconducting filaments embedded in the silver matrix. Phase modification from tetragonal to orthorhombic Bi-2212 by pre heat treatment(PHT) was executed to improve the texture and phase transformation of Bi-2223. Drawing stress was measured to predict the sausaging and stress limit. Rolling Parameters such as thickness. width and winding tension were investigated to roll the tape with uniformity. 1 km length of Bi-2223/Ag superconducting wires were fabricated without any breakage. Critical current (Je) of 270 m length of superconducting tapes was measured over than $70 A/cm^2$ continuously after final sintering.

Critical Parameters to Improve the Fatigue Properties in the High Carbon Steel Wires (고 강도 극 세선의 피로 특성 향상을 위한 특정 인자 제시)

  • Yang, Y.S.;Bae, J.G.;Park, C.G.
    • Transactions of Materials Processing
    • /
    • v.17 no.2
    • /
    • pp.91-96
    • /
    • 2008
  • The governing parameters affecting the fatigue properties have been investigated experimentally in the high carbon steel wires with 0.94 wt.%C. In order to find the crucial factors, the advanced analysis techniques such as optical 3-D profiler, focused ion beam(FIB) and transmission electron microscope(TEM) were used. The two-type steel wires with different drawing strain were fabricated. The fatigue properties were measured by hunter rotating beam tester, specially designed for thin-sized steel wires. It was found that the fatigue properties of the steel wires with high drawing strain was higher than that with other wires because of low residual stress and high adhesion condition of brass coating layer.

Development of km class Bi-2223/Ag HTS tapes (1km급 Bi-2223/Ag 고온초전도 선재 개발 연구)

  • 하동우;오상수;김상철;양주생;황선역;이동훈;최종규;하홍수;권영길
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.63-66
    • /
    • 2003
  • 1 km length of Bi-2223/Ag superconducting wires were fabricated by stacking, drawing process with advanced heat-treatment schedules. Intermediate annealing was carried out to increase the homogeneity and uniformity of the superconducting filaments embedded in the silver matrix. Phase modification from tetragonal to orthorhombic Bi-2212 by pre heat treatment(PHT) was executed to improve the texture and phase transformation of Bi-2223. Drawing stress was measured to Predict the sausaging and stress limit, Rolling parameters such as thickness, width and winding tension were investigated to roll the tape with uniformity. Critical current of 1 km length of superconducting tapes was measured about 50 A continuously after final sintering.

  • PDF

Optimal Design of the Tractrix Die Used in the DDI Process for Manufacturing CG Pressure Vessels (CNG 압력용기 제작을 위한 D.D.I. 공정의 Tractrix 다이 최적설계)

  • Lee, Kwang O;Sim, Hyeon Dae;Kwak, Hyo seo;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.10
    • /
    • pp.879-886
    • /
    • 2016
  • Tractrix dies, used in the deep drawing process, can be used to form CNG pressure vessels without a blank holder. Previous studies had only applied tractrix profiles to perform the first deep drawing process of DDI; but an optimal design of the tractrix die that focuses on improving die life and reducing production cost has not been performed yet. In this study, finite element analyses of deep drawing processes were conducted according to heights of the tractrix die by using translating asymptotes. In addition, researchers analyzed von-Mises stresses at the part of stress concentration of the die according to the forming punch loads in order to propose an optimal tractrix die design.

Structure Development in Drawn Poly(trimethylene terephthalate) (연신에 의한 폴리(트리메틸렌 테레프탈레이트)의 구조 변형)

  • 전병환;김환기;강호종
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.477-483
    • /
    • 2003
  • The structure development of drawn poly(trimethylene terephthalate) PTT as a function of draw down ratio and drawing temperature was studied. The special effort was made to find out the effect of structural development on thermal properties and crystallinity in drawn PTT. The changes in shrinkage ratio and mechanical properties were understood base on the level of crystallinity and orientation of the drawn PTT. The stress induced crystallization caused the increase in glass transition temperature and the decrease in cold crystallization temperature and enthalpy. The crystallinity and orientation were dependent upon the level of applied stress level as well as chain flexibility at high drawing temperature. The drawing resulted in the increase of shrinkage ratio but it was minimized by increasing of crystallinity. The development of orientation resulted in increasing modulus and tensile strength while decreasing elongation at break.

Prediction of Surface Residual Stress of Multi-pass Drawn Steel Wire Using Numerical Analysis (수치해석을 이용한 탄소강 다단 신선 와이어 표면 잔류응력 예측)

  • Lee, S.B.;Lee, I.K.;Jeong, M.S.;Kim, B.M.;Lee, S.K.
    • Transactions of Materials Processing
    • /
    • v.26 no.3
    • /
    • pp.162-167
    • /
    • 2017
  • The tensile surface residual stress in the multi-pass drawn wire deteriorates the mechanical properties of the wire. Therefore, the evaluation of the residual stress is very important. Especially, the axial residual stress on the wire surface is the highest. Therefore, the objective of this study was to propose an axial surface residual stress prediction model of the multi-pass drawn steel wire. In order to achieve this objective, an elastoplastic finite element (FE) analysis was carried out to investigate the effect of semi-die angle and reduction ratio of the axial surface residual stress. By using the results of the FE analysis, a surface residual stress prediction model was proposed. In order to verify the effectiveness of the prediction model, the predicted residual stress was compared to that of a wire drawing experiment.