• Title/Summary/Keyword: drawing strain

Search Result 220, Processing Time 0.026 seconds

Effect of Plastic Deformation and Annealing Process Parameters on Strength and Electrical Conductivity of Cu-Fe Alloys (Cu-Fe 합금에서 소성변형과 어닐링 공정조건이 인장강도와 전기전도도에 미치는 영향)

  • Woo, Chang-Jun;Park, Hyun Gyoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.3
    • /
    • pp.107-112
    • /
    • 2019
  • In order to investigate the effect of plastic deformation and annealing process parameters on strength and electrical conductivity of Cu-Fe alloys, Cu-10wt%Fe, Cu-15wt%Fe alloys were drawn up to ${\eta}=4$ and annealed in the temperature range of $300^{\circ}C$ to $700^{\circ}C$, followed by measurements of tensile strength and electric conductivity. As draw strain increases, tensile strength increases while electrical conductivity decreases. These observations result from reduction of dislocation density and decrease in Fe fiber spacing. Raising annealing temperature brought about decrease of tensile strength and increase of electrical conductivity up to $500^{\circ}C$, being followed by decreasing above $500^{\circ}C$. Such results are thought to be caused by decrease of dislocation density below $500^{\circ}C$ and rapid solubility increase of Fe in Cu above $500^{\circ}C$. For the purpose of obtaining both high strength and high conductivity, annealing process should be incorporated just prior to reaching to final draw strain. For Cu-10wt%Fe alloy, the tensile strength 706.9 MPa and the electrical conductivity 54.34%IACS were obtained through the processes of drawing up to ${\eta}=3$, annealing at $500^{\circ}C$ for 1 hour and additional drawing up to total strain of ${\eta}=4$.

Finite Element Inverse Analysis of the Cylindrical Cup Deep Drawing Process Considering Bending History (굽힘이력을 고려한 원형컵 딥드로잉공정의 유한요소역해석)

  • Huh, J.;Yoon, J.H.;Bao, Y.D.;Huh, H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.340-343
    • /
    • 2007
  • This paper introduces a new approach to consider the bending history in finite element inverse analysis of the cylindrical cup drawing. A modified membrane element is adopted to add the bending-unbending energy to the total plastic energy on the bending-unbending region predicted from the geometry of the final shape and tools. The algorithm suggested was applied to a cylindrical cup deep drawing process. The blank shape and the distribution of the thickness strain are compared with those obtained from incremental finite element analysis. The comparison demonstrates the algorithm proposed reduces the difference between the results from inverse analysis and those from incremental analysis when the bending history is considered.

  • PDF

A Study on the Clad Sheet Metal of the Warm Drawability (SUS-Al-Mg이종판재의 드로잉성형에 관한 연구)

  • Lee, Y.S.;Jung, T.W.;Kwon, Y.N.;Lee, J.H.;Choi, S.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.71-74
    • /
    • 2008
  • The clad sheet is the sheet metal that joined the one or more material with the different property by rolling process. In this study, it is investigated about the mechanical property or formability of SUS-Al-Mg clad sheet. The clad sheet was formed at elevated temperature because of their poor formability at room temperature. The tensile test was confirmed at various temperature and the reduction of strain rate above $250^{\circ}C$. LDR(Limited Drawing Ratio) was obtained through deep drawing test to confirm the formability of the clad sheet. The FE analysis is performed to compare prototype products.

  • PDF

A Study of the FEM Method on the Clad Sheet Metal Formability (Clad Sheet(Mg-Al-SUS) 성형성에 관한 해석 기법의 연구)

  • Jung, T.W.;Lee, Y.S.;Kim, D.;Hoon, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.399-402
    • /
    • 2009
  • The Clad sheet is made roll-bonding process of the one or more material with the different property. Good formability is an essential property in order to deform a clad metal sheet to a part or component. In this study, the mechanical properties and formability of a Mg-Al-SUS clad sheet are investigated. The clad sheet was deformed at elevated temperatures because of its poor formability at room temperature. Tensile tests of the each material and clad sheet were performed at various temperatures and at various strain rates. The limited draw ration (LDR) was obtained using a deep drawing test to measure the formability of the clad sheet. A finite element (FE) analysis was performed to predict formability of the cup drawing product, one_layer model and three_layer model.

  • PDF

Multi-stage Inverse Finite Element Analysis of Multi-stage Rectangular Cup Drawing Processes with Large Aspect Ratio Considering Deformation History (변형이력을 고려한 세장비가 큰 직사각컵 성형공정의 다단계 유한요소 역해석)

  • Kim S. H.;Kim S. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.94-97
    • /
    • 2001
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of computation time and effort. For multi-stage deep-drawing processes, numerical analysis is extremely difficult to carry out due to its complexities and convergence problem as well as tremendous computation time. In this paper, multi-stage finite element inverse analysis is applied to multi-stage rectangular cup drawing processes to calculate intermediate blank shapes and strain distributions in each stages. Deformation history of the previous stage is considered in the computation. Finite element patches are used to describe arbitrary intermediate sliding constraint surfaces.

  • PDF

Multi-stage Inverse Finite Element Analysis of Rectangular Cup Drawing considering Sliding Constraint Surfaces with Arbitrary Intermediate Die Shapes (임의 곡면의 금형형상이 고려된 미끄럼 구속면을 이용한 직사각컵의 다단계 유한요소 역해석)

  • Kim S. H.;Kim S. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.158-161
    • /
    • 2000
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of computation time and effort. For multi-stage deep-drawing processes, numerical analysis is extremely difficult to carry out due to its complexities and convergence problem as well as tremendous computation time. In this paper, multi-stage finite element inverse analysis is applied to multi-stage rectangular cup drawing processes to calculate intermediate blank shapes and strain distributions in each stages. Finite element patches are used to describe arbitrary intermediate sliding constraint surfaces.

  • PDF

A Study on the Influence of Blank Shape in Elliptical Deep Drawing Process (타원형 디프 드로잉 공정에서 블랭크 형상의 영향에 관한 연구)

  • 박동환;배원락;박상봉;강성수
    • Transactions of Materials Processing
    • /
    • v.9 no.5
    • /
    • pp.469-477
    • /
    • 2000
  • Most of researches have been performed on the formability of axisymmetric shape, but it is insufficient that the study on Process variables of elliptical deep drawing Product. There are many Process variables exerted influence on the formability of products. Particularly, blank shape is more important than the others in elliptical deep drawing process. In this study, blanks of three types were proposed and compared using thickness distribution and movement of sheet during the process. The aim of a paper is to obtain optimal blank shape through experiment and finite element analysis(FEA).

  • PDF

Analysis of Rectangular Cup Drawing Processes with Large Aspect Ratio Using Multi-Stage Finite Element Inverse Analysis (다단계 유한요소 역해석을 이용한 세장비가 큰 직사작컵 성형 공정의 해석)

  • Kim, S.H.;Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.10 no.5
    • /
    • pp.389-395
    • /
    • 2001
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of computation time and effort. For multi-stage deep-drawing processes with large aspect ratio, numerical analysis is extremely difficult to carry out due to its complexities and convergence problem. as well as tremendous computation time. In this paper, multi-stage finite element inverse analysis is applied to multi-stage rectangular cup drawing processes to calculate intermediate blank shapes and strain distributions in each stages. Deformation history of the previous stage is considered in the computation. Finite element patches are used to describe arbitrary intermediate sliding constraint surfaces.

  • PDF

Weldline Movement Characteristics for the Warm Deep Drawing of Tailor Welded Blanks (용접 판재의 온간 성형에서의 용접선 이동 특성)

  • Yoo J. S.;Heo Y. M.;Lee S. M.;Seo D. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.151-155
    • /
    • 2001
  • The purpose of this study is to investigate the weldline movement of the laser welded sheets during the warm deep drawing process. For this investigation, Five steps of temperature ranges, from room temperature to $200^{\circ}C$, and two kinds of thickness combination, 0.8 mm${\times}$1.2 mm and 0.8 mm${\times}$1.6 mm SCP1 material sheets, were adopted. Also, the numerical analysis using the PAM-STAMP has been carried out with the same models as the specimens. As a result the higher temperature was adopted, the less weld-line movement was observed.

  • PDF

Analysis of the Axisymmetric Hydro-Mechanical Deep Drawing Process by Using the Finite Element Method (유한 요소법을 이용한 축대칭 하이드로 미케니칼 디프 드로잉 공정의 해석)

  • 양동열;김한경;이항수;김경웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.873-882
    • /
    • 1992
  • The study is concerned with the rigid-plastic element analysis for axisymmetric hydromechanical deep drawing in which the fluid flow influences the metal deformation. Due to the fluid pressure acting on the sheet material hydromechanical deep drawing is distinguished from the conventional deep drawing processes. In considering the pressure effect, the governing equation for fluid pressure is solved and the result is reflected on the global stiffness matrix. The solution procedure consists of two stages ; i.e., initial bulging of the sheet surface before the initiation of steady fluid flow in the flange and fluid-lubricated stage. The problem is decoupled between fluid analysis and analysis of solid deformation by deformation by iterative feedback of mutual computed results. The corresponding experiments are carried out for axisymmetric hydro-mechanical deep drawing of annealled aluminium sheet as well as for deep drawing. It has been shown from the experiments that the limit drawing ratio for hydro-mechanical deep drawing is improved as compared with deep drawing. The computed results are in good agreement with the experiment for variation of punch head and chamber pressure with respect to the punch travel and for distribution of thicknees strain. It is thus shown that the present method of analysis can be effectively applied to the analysis of axisymmetric hydro-mechanical deep drawing processes.