• 제목/요약/키워드: drawing strain

검색결과 220건 처리시간 0.018초

Cu-Fe 합금에서 소성변형과 어닐링 공정조건이 인장강도와 전기전도도에 미치는 영향 (Effect of Plastic Deformation and Annealing Process Parameters on Strength and Electrical Conductivity of Cu-Fe Alloys)

  • 우창준;박현균
    • 열처리공학회지
    • /
    • 제32권3호
    • /
    • pp.107-112
    • /
    • 2019
  • In order to investigate the effect of plastic deformation and annealing process parameters on strength and electrical conductivity of Cu-Fe alloys, Cu-10wt%Fe, Cu-15wt%Fe alloys were drawn up to ${\eta}=4$ and annealed in the temperature range of $300^{\circ}C$ to $700^{\circ}C$, followed by measurements of tensile strength and electric conductivity. As draw strain increases, tensile strength increases while electrical conductivity decreases. These observations result from reduction of dislocation density and decrease in Fe fiber spacing. Raising annealing temperature brought about decrease of tensile strength and increase of electrical conductivity up to $500^{\circ}C$, being followed by decreasing above $500^{\circ}C$. Such results are thought to be caused by decrease of dislocation density below $500^{\circ}C$ and rapid solubility increase of Fe in Cu above $500^{\circ}C$. For the purpose of obtaining both high strength and high conductivity, annealing process should be incorporated just prior to reaching to final draw strain. For Cu-10wt%Fe alloy, the tensile strength 706.9 MPa and the electrical conductivity 54.34%IACS were obtained through the processes of drawing up to ${\eta}=3$, annealing at $500^{\circ}C$ for 1 hour and additional drawing up to total strain of ${\eta}=4$.

굽힘이력을 고려한 원형컵 딥드로잉공정의 유한요소역해석 (Finite Element Inverse Analysis of the Cylindrical Cup Deep Drawing Process Considering Bending History)

  • 허지향;윤종헌;바오이동;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.340-343
    • /
    • 2007
  • This paper introduces a new approach to consider the bending history in finite element inverse analysis of the cylindrical cup drawing. A modified membrane element is adopted to add the bending-unbending energy to the total plastic energy on the bending-unbending region predicted from the geometry of the final shape and tools. The algorithm suggested was applied to a cylindrical cup deep drawing process. The blank shape and the distribution of the thickness strain are compared with those obtained from incremental finite element analysis. The comparison demonstrates the algorithm proposed reduces the difference between the results from inverse analysis and those from incremental analysis when the bending history is considered.

  • PDF

SUS-Al-Mg이종판재의 드로잉성형에 관한 연구 (A Study on the Clad Sheet Metal of the Warm Drawability)

  • 이영선;정택우;권용남;이정환;최상운
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.71-74
    • /
    • 2008
  • The clad sheet is the sheet metal that joined the one or more material with the different property by rolling process. In this study, it is investigated about the mechanical property or formability of SUS-Al-Mg clad sheet. The clad sheet was formed at elevated temperature because of their poor formability at room temperature. The tensile test was confirmed at various temperature and the reduction of strain rate above $250^{\circ}C$. LDR(Limited Drawing Ratio) was obtained through deep drawing test to confirm the formability of the clad sheet. The FE analysis is performed to compare prototype products.

  • PDF

Clad Sheet(Mg-Al-SUS) 성형성에 관한 해석 기법의 연구 (A Study of the FEM Method on the Clad Sheet Metal Formability)

  • 정택우;이영선;김대용;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.399-402
    • /
    • 2009
  • The Clad sheet is made roll-bonding process of the one or more material with the different property. Good formability is an essential property in order to deform a clad metal sheet to a part or component. In this study, the mechanical properties and formability of a Mg-Al-SUS clad sheet are investigated. The clad sheet was deformed at elevated temperatures because of its poor formability at room temperature. Tensile tests of the each material and clad sheet were performed at various temperatures and at various strain rates. The limited draw ration (LDR) was obtained using a deep drawing test to measure the formability of the clad sheet. A finite element (FE) analysis was performed to predict formability of the cup drawing product, one_layer model and three_layer model.

  • PDF

변형이력을 고려한 세장비가 큰 직사각컵 성형공정의 다단계 유한요소 역해석 (Multi-stage Inverse Finite Element Analysis of Multi-stage Rectangular Cup Drawing Processes with Large Aspect Ratio Considering Deformation History)

  • 김승호;김세호;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.94-97
    • /
    • 2001
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of computation time and effort. For multi-stage deep-drawing processes, numerical analysis is extremely difficult to carry out due to its complexities and convergence problem as well as tremendous computation time. In this paper, multi-stage finite element inverse analysis is applied to multi-stage rectangular cup drawing processes to calculate intermediate blank shapes and strain distributions in each stages. Deformation history of the previous stage is considered in the computation. Finite element patches are used to describe arbitrary intermediate sliding constraint surfaces.

  • PDF

임의 곡면의 금형형상이 고려된 미끄럼 구속면을 이용한 직사각컵의 다단계 유한요소 역해석 (Multi-stage Inverse Finite Element Analysis of Rectangular Cup Drawing considering Sliding Constraint Surfaces with Arbitrary Intermediate Die Shapes)

  • 김승호;김세호;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 추계학술대회 논문집
    • /
    • pp.158-161
    • /
    • 2000
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of computation time and effort. For multi-stage deep-drawing processes, numerical analysis is extremely difficult to carry out due to its complexities and convergence problem as well as tremendous computation time. In this paper, multi-stage finite element inverse analysis is applied to multi-stage rectangular cup drawing processes to calculate intermediate blank shapes and strain distributions in each stages. Finite element patches are used to describe arbitrary intermediate sliding constraint surfaces.

  • PDF

타원형 디프 드로잉 공정에서 블랭크 형상의 영향에 관한 연구 (A Study on the Influence of Blank Shape in Elliptical Deep Drawing Process)

  • 박동환;배원락;박상봉;강성수
    • 소성∙가공
    • /
    • 제9권5호
    • /
    • pp.469-477
    • /
    • 2000
  • Most of researches have been performed on the formability of axisymmetric shape, but it is insufficient that the study on Process variables of elliptical deep drawing Product. There are many Process variables exerted influence on the formability of products. Particularly, blank shape is more important than the others in elliptical deep drawing process. In this study, blanks of three types were proposed and compared using thickness distribution and movement of sheet during the process. The aim of a paper is to obtain optimal blank shape through experiment and finite element analysis(FEA).

  • PDF

다단계 유한요소 역해석을 이용한 세장비가 큰 직사작컵 성형 공정의 해석 (Analysis of Rectangular Cup Drawing Processes with Large Aspect Ratio Using Multi-Stage Finite Element Inverse Analysis)

  • 김승호;김세호;허훈
    • 소성∙가공
    • /
    • 제10권5호
    • /
    • pp.389-395
    • /
    • 2001
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of computation time and effort. For multi-stage deep-drawing processes with large aspect ratio, numerical analysis is extremely difficult to carry out due to its complexities and convergence problem. as well as tremendous computation time. In this paper, multi-stage finite element inverse analysis is applied to multi-stage rectangular cup drawing processes to calculate intermediate blank shapes and strain distributions in each stages. Deformation history of the previous stage is considered in the computation. Finite element patches are used to describe arbitrary intermediate sliding constraint surfaces.

  • PDF

용접 판재의 온간 성형에서의 용접선 이동 특성 (Weldline Movement Characteristics for the Warm Deep Drawing of Tailor Welded Blanks)

  • 유정선;허영무;이상무;서대교
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.151-155
    • /
    • 2001
  • The purpose of this study is to investigate the weldline movement of the laser welded sheets during the warm deep drawing process. For this investigation, Five steps of temperature ranges, from room temperature to $200^{\circ}C$, and two kinds of thickness combination, 0.8 mm${\times}$1.2 mm and 0.8 mm${\times}$1.6 mm SCP1 material sheets, were adopted. Also, the numerical analysis using the PAM-STAMP has been carried out with the same models as the specimens. As a result the higher temperature was adopted, the less weld-line movement was observed.

  • PDF

유한 요소법을 이용한 축대칭 하이드로 미케니칼 디프 드로잉 공정의 해석 (Analysis of the Axisymmetric Hydro-Mechanical Deep Drawing Process by Using the Finite Element Method)

  • 양동열;김한경;이항수;김경웅
    • 대한기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.873-882
    • /
    • 1992
  • 본 연구에서는 축대칭 형상의 하이드로 미케니칼 디프드로잉 공정을 강소성 유한요소법으로 해석하는 것이다. 본 논문에서는 Fig.1에서 보이는 바와 같은 경우 에 대하여 평두 펀치(flat headed punch)를 사용한 공정을 강소성 유한요소법으로 해 석하였으며 펀치 행정에 따른 챔버내의 압력 및 플랜지부의 압력분포를 구하였다. 접촉부의 처리는 플랜지부의 압력분포를 구하였다. 접촉부의 처리는 Yang등이 제안 한 방법을 적용하였다. 이론해석의 타당성을 알아보기 위하여 금형을 설계, 제작하 고 실험을 수행하여 결과를 비교 검토하였다.