• Title/Summary/Keyword: drawing force

Search Result 222, Processing Time 0.021 seconds

Influence of Drawing Speed and Blank Holding Force in Rectangular Drawing of Ultra Thin Sheet Metal (극박판 사각 드로잉에 있어서 드로잉속도와 블랭크홀딩력의 영향)

  • Lee, J.H.;Chung, W.J.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.21 no.6
    • /
    • pp.348-353
    • /
    • 2012
  • Micro-drawn parts have received wider acceptance as products become smaller and more precise. The subject of this study was the deformation characteristics of ultra thin sheet metal in micro drawing of a rectangular shaped part. The influence of drawing speed and blank holding force on the product quality was investigated in micro-drawing of ultra thin sheet of beryllium copper (C1720) alloy. The specimen had a diameter of 4.8 mm and a thickness of $50{\mu}m$. Experiments were carried out in which, different blank holding force and drawing speed were considered. The product quality was evaluated by measuring the thickness and hardness along two specified directions, namely, the side and diagonal directions. The distribution of the thickness strain showed severe thinning especially around the punch radius in both directions. In the diagonal direction, thickening occurred in the flange area due to the axi-symmetric drawing mode. The increase of blank holding force and/or drawing speed was found to cause severe thinning around the punch radius. The blank holding force had a greater effect on thinning of the product than the drawing speed.

A Study on the Static Stiffness in the Main Spindle Taper of Machin Tool (공작기계 주축 테이퍼 결합부 정강성에 관한 연구)

  • 김배석;김종관
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.149-154
    • /
    • 2001
  • This paper presents the experimental study of the static stiffness for the BT Shank(7/24 Long Taper) and the HSK Tool Shank(1/10 Short taper). The static stiffness test was performed under different experimental conditions. The results obtained are as follows ; As known in the analysis results of the Load-Deflection diagram of the 7/24 Test tool shank, it is turned out that the diagram is a linear characteristics without regard to axial drawing force and according as the axial drawing force get to the 6kN, the static stiffness of the shank increase linearly. Thus the effective axial drawing force which maintains the static stiffness of the Main spindle taper of Machine Tool is larger than 6kN. It is found that the Load-Deflection diagram with 6kN of drawing force in the 1/10 Test tool shank is characterized by non-linear. But according as the axial drawing force is increasing by the 8kN, the diagram is characterized by linear. And increasing amount of deflection is about 60%. Therefore commendable axial drawing force is larger than 8kN. As a result, considering that the actual drawing force of the Machining Center is about 1300kgf and axial drawing force 12kN is equivalent amount as a 1220kgf, it is turned out that 1/10 Test tool shank superior to 7/24 Test tool shank in the static stiffness.

  • PDF

Optimal Design in cylindrical cup drawing by forming analysis (원형컵 드로잉의 성형해석에 의한 최적설계)

  • 정완진;김종호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.393-396
    • /
    • 2003
  • A systematic investigation for the process design in deep drawing is necessary to improve the quality of drawn cups. This study concentrates mainly on the influence of process design strategy on the product quality. Several types of process design were chosen from initial blank of 100mm in diameter to make final cup of 50mm in diameter. Forming analysis are carried out to find out optimal design in terms of drawing force. We assume that the case which shows minimum drawing force in the subsequent operations is the best case. Through experiments it is found that the case which shows minimum drawing force also results in minimum drawing force and better product quality than other case. Thus, it is shown that this design strategy is very effective in the improvement of quality in drawn cups.

  • PDF

Analysis of Multi-Pass Wet Wire Drawing Process and Its Application (다단 습식 신선공정 해석 및 적용)

  • Lee S. K.;Kim B. M.
    • Transactions of Materials Processing
    • /
    • v.14 no.8 s.80
    • /
    • pp.689-695
    • /
    • 2005
  • Multi-pass wet wire drawing process is used to produce fine wire in the industrial field. The production of fine wire through multi-pass wet wire drawing process with appropriate dies pass schedule would be impossible without understanding the relationship among many process parameters such as material properties, dies reduction, friction conditions, drawing speed etc However, in the industrial field, dies pass schedule of multi-pass wet wire drawing process has been executed by trial and error of experts. This study investigated the relationship among many process parameters quantitatively to obtain the important process information fur the appropriate pass schedule of multi-pass wet wire drawing process. Therefore, it is possible to predict the many important process parameters of multi-pass wet wire drawing process such as dies reduction, machine reduction, drawing force, backtension force, slip rate, slip velocity rate, power etc. The validity of the analyzed drawing force was verified by FE simulation and multi-pass wet wire drawing experiment. Also, pass redesign was performed based on the analyzed results, and the wire breakage between the original pass schedule and the redesigned pass schedule was compared through experiment.

A study on the effect of die profile radius on formability in deep-drawing process with spring-type blankholder system (스프링형 블랭크홀더방식의 디프드로잉 가공에서 다이 윤곽반경이 성형성에 미치는 영향에 관한 연구)

  • 이종국;강명순
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.35-42
    • /
    • 1989
  • The major purpose of this paper is a study on the effect of die profile radius on the formability of spring-type blankholder system in deep drawing process. By drawing the various materials, formability is studied by means of checking the drawing force, blankholding force variation, limiting drawing ratio and wall wrinkling phenomenon. As the die profile radius increases, the maximum drawing force and maximum blankholding force decrease regardless of lubrication condition. Because better lubrication induces blankholding force to rise, spring type blankholder system is better to protect flange wrinkling phenomenon than constant pressure type. And wall wrinkling phenomenon was not detected in experimental die radius range, so the Miyakawa's upper wrinkling limit is understimated in case of material tested.

  • PDF

New Design of Cylindrical Cup Deep Drawing by Forming Analysis (원형컵 디프 드로잉의 성형해석에 의한 공정설계)

  • 정완진;김종호;류제구
    • Transactions of Materials Processing
    • /
    • v.12 no.7
    • /
    • pp.647-653
    • /
    • 2003
  • A systematic approach for the process design in deep drawing is necessary to improve the quality of drawn cups. This study concentrates mainly on the influence of process design strategy on the product quality. Different types of process design were chosen from initial blank of 100mm in diameter to make final cup of 50mm in diameter. In order to make this cup, we used 2-stage deep drawing. Forming analyses are carried out to find out better design in terms of drawing force. It is proposed that the process design, in which maximum drawing forces during successive operations are equal, is a more desirable one. Through experiment, it is found that the proposed case shows equivalent values in terms of maximum drawing force during successive operations in real process and can achieve the best product quality in terms of dimensional accuracy. Thus, it is shown that proposed design is very effective in the improvement of quality in drawn cups and may be extended to deep drawing with more stages.

Development of Analysis Program for Multi-Pass Wet Wire Drawing Process and Its Application (습식 다단 인발공정 해석 프로그램 개발 밀 적용)

  • 이상곤;김민안;김병민;조형호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.126-134
    • /
    • 2003
  • This paper investigates the multi-pass wet wire drawing process considering the slip between the wire and the capstan. The production of fine wire through multi-pass wet wire drawing process would be impossible without backtension. The backtension is affected by many process parameters, such as slip, dies reduction, coiling number of wire at the capstan, machine reduction, characteristic of lubricant etc. Up to date, die design and dies pass schedule of multi-pass wet wire drawing process have been performed by trial and error of expert in the industrial field. In this study, an analysis program which can perform the analysis and considering the effect of slip at each capstan was developed. The effects of many important parameters (drawing force, backtension force, needed power, slip rate, slip velocity rate etc.) on multi-pass wet wire drawing process can be predicted by this developed program. It is possible to obtain the important basic data which can be used in the pass schedule of multi-pass wet wire drawing process by using this developed program.

Precision Simulation of Drawing Processes Considering Back Pressing or Tension with Artificial Body Force Scheme (인위적 체적력 기법에 의한 후방 가압 및 인장을 고려한 인발공정의 정밀 시뮬레이션 기술)

  • Eom, J.G.;Shim, S.H.;Cho, J.M.;Kim, H.S.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.6
    • /
    • pp.461-467
    • /
    • 2011
  • An artificial body force method is presented to accurately simulate drawing processes in which back pressing is exerted. A rigid-plastic finite element method is applied together with a numerical scheme to eliminate the numerically incurred plastic deformation in rigid or elastic region, which significantly influences simulation results because it eventually changes reduction of area in drawing. Back tension or compression is applied by body force at the rear part of material to obtain numerically stable solution. Two typical examples are shown, a drawing process with back tension applied and a tube drawing with a fixed plug and back pressing applied.

A Numerical Study on formability improvement by adjusting blank holding force (블랭크 홀딩력 조절을 통한 성형성 향상에 관한 수치적 연구)

  • Choi, Hyun-Seok;Chung, Wan-jin
    • Design & Manufacturing
    • /
    • v.10 no.1
    • /
    • pp.31-35
    • /
    • 2016
  • In sheet metal forming process, drawing is typical process. And the key factor of drawing is blank holding force (BHF) A low BHF can cause wrinkling, whereas a high BHF can cause fracture during a deep drawing process. Thus, formability can be influenced by application appropriate BHF. In this study, a variable blank holding force (VBHF) is applied to extend the forming limit by avoiding both wrinkling and fracture. To determine VBHF in drawing process, numerical simulations and statistical analysis are carried out using commercial FEM software.

Design and Manufacture of Ultrasonic Vibration Drawing Tool (유한요소해석을 이용한 초음파 진동 인발기 설계 및 제작)

  • Lee, K.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.19 no.6
    • /
    • pp.363-371
    • /
    • 2010
  • In ultrasonic vibration drawing, the drawing forces can be reduced by applying ultrasonically oscillating dies. Ultrasonic vibration drawing has been considered as a means of accommodating high-level drawing processes such as shaped wire, ultrafine wire, and the wire drawing operation in semidry or dry condition. Prior studies were attempted to analyze the mechanism of improved drawing performances, such as reduced drawing force and improved lubrication characteristic. However, researches on design rule for ultrasonic vibration drawing system are not yet carried out. The principal objectives of this work are to design a set of tooling capable to superimpose the oscillations and to observe by experiments the influence of the ultrasonic oscillations on the wire drawing.