• Title/Summary/Keyword: drained and undrained analysis

Search Result 22, Processing Time 0.027 seconds

Numerical Analysis on Drained and Undrained Pullout Capacity in Reinforced Soil (보강토에서의 배수 및 비배수 인발력에 대한 수치해석)

  • Lee, Hong-Sung;Son, Moo-Rak
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.113-123
    • /
    • 2007
  • In order to ensure the stability of reinforced structures backfilled with low permeability soil, it is very important to determine the change in undrained pullout capacity compared to drained pullout capacity prior to design. In this research, a series of numerical analyses on laboratory pullout tests have been performed on different materials (clean sand, 5, 10, and 15% silty sand), different overburden pressures (30, 100 and 200 kPa), and different drainage conditions (drained and undrained) in order to compare drained pullout capacity with undrained pullout capacity. The results of numerical analysis also have been compared with the results of the laboratory pullout tests. The analysis results show that both drained and undrained pullout capacity are influenced by silt contents and increase with increase of friction angle of the soil and overburden pressure. In undrained condition, the effective stresses acting on the reinforcement decrease as excessive pore pressures are generated, resulting in decrease in pullout capacity; 57% for 30 kPa, and 70% for 100 and 200 kPa. These results show a good agreement with the results of the laboratory pullout tests performed under the same condition.

Bifurcation analysis of over-consolidated clays in different stress paths and drainage conditions

  • Sun, De'an;Chen, Liwen;Zhang, Junran;Zhou, Annan
    • Geomechanics and Engineering
    • /
    • v.9 no.5
    • /
    • pp.669-685
    • /
    • 2015
  • A three-dimensional elastoplastic constitutive model, also known as a UH model (Yao et al. 2009), was developed to describe the stress-strain relationship for normally consolidated and over-consolidated soils. In this paper, an acoustic tensor and discriminator of bifurcation for the UH model are derived for the strain localization of saturated clays under undrained and fully and partially drained conditions. Analytical analysis is performed to illustrate the points of bifurcation for the UH model with different three-dimensional stress paths. Numerical analyses of cubic specimens for the bifurcation of saturated clays under undrained and fully and partially drained conditions are conducted using ABAQUS with the UH model. Analytical and numerical analyses show the similar bifurcation behaviour of overconsolidated clays in three-dimensional stress states and various drainage conditions. The results of analytical and numerical analyses show that (1) the occurrence of bifurcation is dependent on the stress path and drainage condition; and (2) bifurcation can appear in either a strain-hardening or strain-softening regime.

Theoretical approach for ground behaviour during tunnelling in soils (토사터널굴진시 지반거동에 대한 이론적 접근에 대한 연구)

  • Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.4
    • /
    • pp.301-312
    • /
    • 2003
  • This paper considers the stresses and pore pressures induced in soft ground due to tunnelling and it presents and discusses the approach methods for estimating the stability of the tunnel and its heading during drained and undrained condition. In practical, the undrained analyses of the face stability of shield tunnelling in soft soil, are carried out based on the field data measured during tunnelling and the results are also evaluated.

  • PDF

Undrained and Drained Behaviors of Laterally-loaded Offshore Piles (배수조건에 따른 측방유동 해상말뚝의 거동특성)

  • Seo, Dong-Hee;Jeong, Sang-Seom;Kim, Young-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.149-160
    • /
    • 2008
  • Offshore pile foundations are prone to lateral soil pressures resulting from embankment construction for the reclamation on deepwater soft clay. Since the 1990s, offshore reclamation has actively progressed in Korea, connecting with the development of Songdo newtown, Incheon newport, and Busan newport representatively. Special attention has been given to lateral soil-structure interaction problems related to passively-loaded offshore pile foundations. Based on a plane strain large deformation finite element (LDFE) approach, this paper presents the results of investigation into undrained (short-term) and drained (long-term) behavior of passively-loaded offshore pile foundations. This study examines the effects of major factors, such as soil profile, pile head boundary condition, magnitude of embankment load, and average degree of consolidation. The results allowed quantification of differences in the magnitude of lateral soil pressure acting on the piles between undrained and drained phases.

Evaluation on Partially Drained Strength of Silty Soil With Low Plasticity Using CPTU Data (CPTU 데이터를 이용한 저소성 실트 지반의 부분배수 강도 평가)

  • Kim, Ju-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.55-66
    • /
    • 2017
  • The standard piezocone penetration rate of 2 cm/s is proposed in specifications regardless of soil type. However, conditions of standard Piezo Cone Penetration (CPTU) Testings in silty soils with low plasticity vary from undrained to partially drained or fully drained penetration conditions. The partially drained shear strengths of Incheon, Hwaseong and Gunsan silty soils were estimated from the analysis results of the distributions of CPTU-based shear strengths. The CPTU-based shear strengths were compared between the undrained shear strength line and the fully drained shear strength line, which were determined from approximately ${\varphi}^{\prime}=3^{\circ}$ and ${\varphi}^{\prime}=15^{\circ}$, respectively. The internal friction angles obtained from the back analysis and UU-tests tended to increase with decreasing plasticity index, which range approximately from ${\varphi}^{\prime}=2^{\circ}$ to ${\varphi}^{\prime}=14^{\circ}$. The results matchs well with CPTU-based estimation results.

A Two Mobilized-Plane Model for Soil Liquefaction Analysis (액상화해석을 위한 두 개의 활성면을 가진 구성모델)

  • Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.173-181
    • /
    • 2006
  • A Two Mobilized-Plane Model is proposed for monotonic and cyclic soil response including liquefaction. This model is based on two mobilized planes: a plane of maximum shear stress, which rotates, and a horizontal plane which is spatially fixed. By controlling two mobilized planes, the model can simulate the principal stress rotation effect associated with simple shear from different $K_0$ states. The proposed model gives a similar skeleton behaviour for soils having the same mean stress, regardless of $K_0$ conditions as observed in laboratory tests. The soil skeleton behaviour observed in cyclic drained simple shear tests, including compaction during unloading and dilation at large strain is captured in the model. Undrained monotonic and cyclic response is predicted by imposing the volumetric constraint of the water on the drained or skeleton behaviour. This constitutive model is incorporated into the dynamic coupled stress-flow finite difference program of FLAC (Fast Lagrangian Analysis of Continua). The model was first calibrated with drained simple shear tests on Fraser River sand, and verified by comparing predicted and measured undrained behaviour of Fraser River sand using the same input parameters.

Behavior Analysis on Earthquake-Induced Deformation of Quay Wall and Apron in Ground at Youngilman Port Considering Drainage Condition Using FEM Analysis (FEM 해석에 의한 지반배수조건에 따른 지진 시 영일만항의 케이슨식 안벽 및 배후지의 거동 분석)

  • Lee, Hak-Ju;Kang, Gi-Chun;Hwang, Woong-Ki;Lee, Min-Sun;Kim, Tae-Hyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.386-394
    • /
    • 2019
  • In this study, according to drainage condition (undrained and drained) in ground, the settlement and horizontal displacement of caisson quay wall and apron in Yeongilman port due to excess pore water pressure in ground induced by the magnitude 5.4 earthquake in Pohang on November 15, 2017. In general, seismic response analysis was carried out under undrained drainage condition, but in this study, drain drainage analysis was conducted to estimate displacement during earthquake as well as an additional displacement due to dissipation of excess pore water pressure after earthquake. The result of after earthquake can not be known under undrained drainage condition. Results cleary showed that the behavior of structure and ground was dependent on drainage condition in ground. Especially, based on the drained drainage condition, the additional displacement was clearly detected due to dissipation of excess pore water pressure after earthquake. Which indicates that both results are different to drainage condition in ground, and therefore, drainage condition analysis is necessary to accurately estimate the behavior of ground and structure in seismic response analysis.

Post-Liquefaction Induced Ground Settlement by Dissipation of Porewater Pressure under Drained Condition (지반 배수조건을 고려한 액상화 이후 과잉간극수압 소산에 따른 지반의 침하)

  • Yun, Seong-Kyu;Kim, Donghwan;Yang, Yeongchan;Kang, Gichun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.6
    • /
    • pp.5-16
    • /
    • 2022
  • In the case of domestic seismic design, deformation of structures and ground is reviewed through undrained condition analysis and applied to design and maintenance. However, when the ground undergoes dissipation after liquefaction due to a dynamic load such as an earthquake, additional displacement occurs and greater damage occurs. Therefore, it is necessary to additionally analyze the drained conditions, It is necessary to grasp the exact ground behavior such as calculating and reviewing the amount of subsidence of the ground that has undergone the loss process after an earthquake and apply it to design and maintenance together. Therefore, in this study, numerical analysis was performed assuming undrained and drained conditions by dividing pure sandy soil into loose soil with Dr=30% and high-density soil with Dr=70%. In particular, when a dynamic load such as an earthquake is applied, considering the drained conditions of the ground, the settlement amount and the pore water pressure ratio of loose and dense ground are compared, This study focused on comparative analysis of settlement amount and pore water pressure ratio in the process of ground loss after an earthquake. As a result, the amount of subsidence during the dissipation process was 30 to 60 times greater than that of the earthquake.

Large Deformation Analysis Using an Anistropic Hardening Constitutive Model : II. Analysis (비등방경화 구성모델을 이용한 대변형 해석 :II. 해석)

  • 전병곤;한성수;오세붕
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.215-228
    • /
    • 2002
  • In a companion paper. (Oh, 2002), the constitutive model, called GUX model, was implemented as a user subroutine in ABAQUS code, where the GUX model could describe the behavior of overall strain range. An accuracy analysis verified that the implicit stress integration maintained the accuracy of solutions successfully. Since the GUX model is an anistropic hardening elasto-plastic constitutive model based on total stress concept, geotechnical problems under fully drained or undrained condition can be analyzed after acquisition of stress-strain relationships from drained or undrained triaxial tests. This study includes the analyses of the stability of embankments on soft clays and weathered soils and the example of axially loaded soil-pile system. In the large deformation analyses, geometric nonlinearity was considered and the result of analyses with GUX model was compared with that of Mises model for the overall strain range behavior.

Influence of Pore Pressure Behind a Subsea Tunnel on Its Stability (터널 배면의 간극수압이 해저터널의 안정성에 미치는 영향)

  • You, Kwang-Ho;Lee, Kwang-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.4
    • /
    • pp.355-363
    • /
    • 2006
  • In this study, it was analyzed how the pore pressure behind a subsea tunnel influences on the stability of the tunnel. The tunnel is located in the soft rock layer, and a soft sandy layer and weathered soil layer are located on the top of it. Coupled numerical analyses are performed for both drained and undrained condition with varying coefficients of lateral earth pressure. In the case of undrained conditions, the stability of the tunnel was analyzed with different thicknesses of shotcrete. On the other hand, a sensitivity analysis was performed with different hydraulic conductivities and porosities of the shotcrete for the drained conditions. The stability of a subsea tunnel was evaluated in terms of safety factor suggested by You et al.(2000, 2001, 2005) based on the shear strength reduction technique. In this paper, the safety factor of a tunnel was calculated under steady state flow condition during hydro-mechanical coupled analysis. As a result, it was found that the stability of a subsea tunnel could be rather increased by allowing a proper amount of groundwater inflow into a subsea tunnel.