• Title/Summary/Keyword: drainage ratio

Search Result 386, Processing Time 0.027 seconds

Study on the unsteady characteristics of depressurized drainage system (부압을 이용한 배수시스템의 비정상상태 유동특성해석)

  • Lee, Kil-Seok;Lee, Jin-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2682-2687
    • /
    • 2008
  • Depressurized drainage systems have been used for more than 30 years and are becoming a common part of urban drainage infrastructures. The hydraulic principles governing the operation of the depressurized drainage systems were studied in this paper and particularly, focused on the analysis of unsteady characteristics of the two-phase flow. A definition of the filling ratio was outlined and types of flow pattern were classified according to the filling ratio. Experiments were conducted to investigate the main features of pressure fluctuation. All results were found to depend on the filling ratio of the upstream pipe flow as well as the upstream Froude number.

  • PDF

The characteristics of radial consolidation & permeability on the inflow & outflow condition (내.외향류 방사형 압밀/투수 특성에 관한 연구)

  • 천홍래;김지용;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.109-116
    • /
    • 1999
  • This study is to make clear for the characteristics of radial drainage consolidation/permeability At the result of the radial drainage consolidation / permeability test, the permeability of outflow drainage condition is higher than Inflow drainage condition and the time for the end of consolidation, outflow drainage condition is shorter than inflow drainage condition. So drainage area ratio test and control of hydraulic gradient test are carry out to analysis this result. Finally, compared with the characteristics on the condition of inflow and outflow permeability and consolidation.

  • PDF

Varietal Difference in Growth Response and Ginsenoside Contents of Two-Year-Old Ginseng Grown in Paddy Field with Different Drainage Conditions (배수등급이 다른 논토양에서 2년생 인삼의 품종별 생육 및 진세노사이드함량 차이)

  • Lee, Sung-Woo;Kim, Chung-Guk;Yeon, Byeong-Yeol;Hyun, Dong-Yun;Shin, Yu-Su;Kang, Seung-Won;Cha, Seon-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.4
    • /
    • pp.401-406
    • /
    • 2008
  • To select adoptable varieties in paddy soil with relatively high content of soil moisture, the growth characteristics and ginsenoside content of two-year-old ginseng was investigated in paddy soil with two types of drainage conditions such as poorly and imperfectly drained class, using 4 varieties, Cheonpoong (CP), Yeonpoong (YP), Hwangsookjong (HS) Jakyeongjong (JK). The ratio of survived plant in poor drainage conditions was higher than that in imperfect drainage conditions, and the ratio of discolored leaf in the former was lower than that in the latter. The ratio of survived plant was highest in HS, while lowest in YP. The ratio of discolored leaf was lowest in HS, while highest in YP among 4 varieties. Root weight per plant and yield were more distinctly decreased in poor drainage conditions than those in imperfect drainage conditions. Descending order of yield in poor drainage conditions was JK, CP, YP and HS, while CP, YP, JK and HS in imperfect drainage conditions. Varietal difference of rusty colored root was more distinct than that between poor and imperfect drainage conditions. The ratio of rusty colored root was relatively low in CP and JK, while high in YP and HS. Total ginsenoside content of two-year-old ginseng grown in poor drainage conditions was increased more than that in imperfect drainage conditions due to full growth of root. Regardless of different drainage conditions total ginsenoside content was highest in YP, while lowest in HS among 4 varieties, and there were no distinct difference between CP and JK.

Numerical analysis of Consolidation Behavior under Various Drainage Conditions (배수조건에 따른 압밀 거동의 수치적 분석)

  • Oh, Sang-Ho;Cho, Wan-Jei;Yune, Chan-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1194-1199
    • /
    • 2010
  • Systematic finite element analyses on consolidation were performed with various drainage conditions. Numerical analyses were performed using SAGE CRISP2D, a commercial numerical analysis program for the conventional geotechnical engineering practice. For the input properties of the numerical analyses, incremental loading oedometer tests were performed on reconstituted kaolinite samples. Numerical analyses were performed with various drainage conditions such as vertical, radially inward and outward drainage conditions. For the case of radially inward drainage conditions, a series of numerical analyses were performed with varying the diameter of vertical drains. As a result, the lateral deformation and void ratio variation occurred during consolidation for the radially inward or outward drainage conditions. And the variations of the lateral deformation and void ratio did not fully disappear even after the completion of the consolidation and induced the spatial variations of the soil properties. Keywords : finite element analysis of consolidation, various drainage conditions, lateral deformation, spatial variation of soil properties.

  • PDF

Characteristics of Stock Drainage Depending on Refining Load and Analysis of Drainage Factors (고해하중변화에 의한 탈수성과 탈수영향 인자 분석)

  • 장현성;박종문
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.2
    • /
    • pp.10-16
    • /
    • 2004
  • Structures and strengths of paper have been studied by analyzing fibers characteristics depending on refining methods. Mixing ratio of softwood and hardwood fibers and fibers characteristics have been analyzed for paper quality improvement. In this study flocculation and drainage of fibers were analyzed to improve the production efficiency and paper product's quality. Floc size and drainage rate depending on stock consistency and fines content were analyzed. Total amount of drainage during drainage process was measured quantitatively by using DI(drainage index). Floc size, viscosity of floc and dewatering times were also measured. In the case of refining load $2.8 kg_f$ , drainage was occurred by filtration mechanism rather than thickening mechanism because drainage resistance increased by fibrillation of fibers. Therefore, the drainage rate of $2.8 kg_f$ refining load stock was slower than that of $5.6 kg_f$.

Application of Synthetic Mineral Microparticles with Various Metal Species

  • Lee, Sa-Yong;Hubbe, Martin A.
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.5
    • /
    • pp.1-10
    • /
    • 2008
  • Synthetic mineral microparticles (SMM) is a patented system which has been developed to promote drainage of water and retention of fine particles during papermaking. It is shown in patents that the SMM system can have advantages in both of drainage and retention, compared with montmorillonite (bentonite), which is one of the most popular materials presently used in this kind of application. Turbidity and gravity drainage time were measured using a Britt-Jar test with representative SMM formulations, in order to confirm the efficacy of SMM covering a wide range of compositions and discover effects of some key variables that have the potential to lead to unexpected advantages in terms of the effectiveness of the microparticles, when used in combination with a cationic polyacrylamide treatment of papermaking furnish. An iron silicate showed highest retention performance, as well as suitably fast drainage time relative to other metal silicate and bentonite. Zinc silicate improved retention and drainage. SMM synthesized from aluminum sulfate ($Al_2(SO_4){_3}$) did not show a benefit in retention and drainage, relative to bentonite. SMM synthesized from aluminum chloride ($AlCl_3$) performed better in drainage and retention than bentonite when the Al/Si ratios were 0.76 and 1.00. It was found that when the Al/Si ratio and neutralization are considered, pH variation due to the change of Al/Si ratio can be a key factor to control the size of primary metal silicate particles and the degree of coagulation of the primary particles.

Analysis of Changes in Ion Concentration with Time and Drainage Ratio under EC-based Nutrient Control in Closed-loop Soilless Culture for Sweet Pepper Plants (Capsicum annum L. 'Boogie') (EC 기준 순환식 파프리카 수경재배에서 시간 경과 및 배액율에 따른 이온농도 변화 분석)

  • Ahn, Tae-In;Shin, Jong-Wha;Son, Jung-Eek
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.298-304
    • /
    • 2010
  • Nutrient uptake by plants and drainage ratio in culture beds can affect ion balance and concentrations of nutrient solutions in electrical conductivity (EC)-based closed-loop soilless culture. This study was conducted to analyze ion concentration changes with time and drainage ratio under EC-based nutrient control in closed-loop soilless culture for sweet pepper plants (Capsicum annum L. 'Boogie'). At first experiment, ion concentrations of the nutrient solution were periodically analysed while collected drainage was being reused by mixing with fresh nutrient solution at a dilution rate of EC $2.2\;dSm^{-1}$. Changes in ion concentrations of $K^+$, $Ca^{2+}$, $Mg^{2+}$, $NO_3^-$, $SO_4^{2-}$, and $PO_4^{3-}$ were 1.13, 5.35, 0.92, 0.9, 1.10, $0.19\;meq{\cdot}L^{-1}$, respectively. Ion balance such as $K^+$ : $Ca^{2+}$ and $SO_4^{2-}$ : $NO_3^-$ were mainly affected during the recirculation of nutrient solution. At second experiment, ion concentrations and EC of drainage were compared before and after replenishment under different four drainage ratios of 7%, 16%, 39%, and 51%. Ion ratios of the recirculated nutrient solutions such as $K^+$ : $Ca^{2+}$ for cation and $SO_4^{2-}$ : $NO_3^-$ for anion were investigated. ECs of drainage decreased with increase of drainage ratio and each ion concentration showed the same trends as EC did. Ion balances in drainage with drainage ratio were a little different from each other, but each ratio could be corrected by replenishment process. The ion balance at 7% drainage ratio was closest to initial ratio and followed by 16%, 51%, and 39% in the order. Ion balance such as $K^+$ : $Ca^{2+}$ and $NO_3^-$ : $PO_4^{3-}$ were mainly affected the correction process.

Characteristics of Shear Behavior for Sand-Clay Composite by Triaxial Test (삼축압축시험에 의한 모래-점토 복합시료의 전단거동 특성)

  • Lee, Jin-Soo;Kim, Jae-Il;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.4
    • /
    • pp.19-25
    • /
    • 2006
  • To examine the general features of a sand-clay composite triaxial test by making specimen varying ratios of diameters (dw) of sand columns that are installed on the soft ground as drains to diameters (de) of drain zone so called drainage space ratio (n=de/dw), densities of the granular columns, and strength of soft soils round around. I also conducted a test to research the reinforcement ability and effects of the ground when the granular columns are wrapped with supplementary materials such as geotextile. The results of the triaxial compression test showed that the shear strength increase is much big when the granular columns are wrapped with supplementary materials, while the shear strength increases as the diameter and density of the granular column increase in general. Also the drainage space ratio shows a distinct increase just below 3 and a similar shear behavior to sand is appeared. The pore water pressure coefficient decreases as the drainage space ratio decreases, however, when the drainage space ratio is less than 3~4, it declines significantly as shown in the results of shear behavior.

  • PDF

Estimation of Upstream Ungauged Watershed Streamflow using Downstream Discharge Data (하류 유량자료를 이용한 상류유역의 미계측 유출량 추정)

  • Jung, Young Hun;Jung, Chung Gil;Jung, Sung Won;Park, Jong Yoon;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.169-176
    • /
    • 2012
  • This study describes the estimation of upstream ungauged watershed streamflow using downstream discharge data. For downstream Dongchon (DC) and upstream Kumho (KH) water level stations in Kumho river basin ($2,087.9km^2$), three methods of Soil and Water Assessment Tool (SWAT) modeling, drainage-area ratio method and regional regression equation were evaluated. The SWAT was calibrated at DC with the determination coefficient ($R^2$) of 0.70 and validated at KH with $R^2$ of 0.60. The drainage-area ratio method showed $R^2$ of 0.93. For the regional regression, the watershed area, average slope, and stream length were used as variables. Using the derived equation at DC, the KH could estimate the flow with maximum 41.2 % error for the observed streamflow.

Characteristics of Behavior of the Nutrients at Paddy Field Area with Large-Scaled Plots (광역논에서의 영양 물질(N, P)의 거동 특성)

  • Oh, Seung-Young;Kim, Jin-Soo;Jung, Gu-Young
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.567-570
    • /
    • 2003
  • Nutrients behavior were investigated at a paddy fields area(Soro-ri) with large-scaled plots on loam soil during irrigation seasons of $2001{\sim}2002$. The average concentration of TN, TDN and TDP in drainage water was higher than that in irrigation water. On the other hand, TP in irrigation water was higher than that in drainage water. The ratio of a TDN to TN accounts for over 90% and the ratio of TDP to TP accounts for $50{\sim}70%$. Especially, the ratio of TDP to TP in drainage water was bigger than that in irrigation water, suggesting that much of particulate component was reduced due to sedimentation and adsorption in paddy fields plots.

  • PDF