• Title/Summary/Keyword: drainage and irrigation facilities

Search Result 38, Processing Time 0.026 seconds

Assessment of Spatial Characteristics of Protected Cultivation Facilities (시설농업의 입지현황 및 특성 분석)

  • 황한철;이남호
    • Journal of Korean Society of Rural Planning
    • /
    • v.4 no.1
    • /
    • pp.86-97
    • /
    • 1998
  • It is neceesary to evaluate the location suitability of protected cultivation facilities to guide reasonable protected cultivation. The evaluation system could help plan new protected cultivation facilities in rural areas. In this study, an assessment was made for the facilities located in three different selected regions: suburban, plain, and mountainous. The assessment was performed based on spatial characteristics of protected cultivation facilities such as land category, size of protected cultivation facilities, land shape, stoniness, land consolidation level, soil drainage, land slope, topography, effective soil depth, zoning or not of agricultural development area, irrigation and drainage condition, distance from roads, and so forth. The results showed that there were significant differences in locational characteristics among the three regions.

  • PDF

Assessment of Appropriate Period and Cost(P&C) of Repair and Improvement for Irrigational Structures (논문 - 수리시설물의 적정개보수 주기 및 비용 산정)

  • Lee, Joon-Gu;Kim, Myong-Won;Shin, Tae-Ho
    • KCID journal
    • /
    • v.18 no.2
    • /
    • pp.142-160
    • /
    • 2011
  • This study was performed to apply the preventive management technique that is known for more economic and preventive for disaster than corrective technique to Repair & Improvement(R&I) Project policy of irrigational facilities. The appropriate periods of R&I Project had been driven to 40yrs, 24yrs, 27yrs, and 29yrs for reservoir, Pumping and drainage pumping station, Diversion weir and Irrigation & drainage canal respectively. The cost of R&I Project for 10 years had been estimated as 616.9 billion won per year including the 85 billion won for the project of 'Disaster prevention and Function continuity'. After the period of 'Improvement all at once', about 30yrs, 421.8 billion won was requested for 'Function continuity'.

  • PDF

Network Modeling of Paddy Irrigation System using ArcHydro GIS (ArcHydro를 이용한 GIS기반의 관개시스템 네트워크 모델링)

  • Park, Geun-Ae;Park, Min-Ji;Jang, Jung-Seok;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.323-327
    • /
    • 2006
  • During the past decades in South Korea, there have been several projects to reduce water demand and save water for paddy irrigation system by automation. This is called as intensive water management system by telemetering of paddy ponding depth and canal water level and telecontrol of water supply facilities. This study suggests a method of constructing topology-based irrigation network system using GIS tools. For the network modeling, a typical agricultural watershed included reservoirs, irrigation and drainage canals, pumping stations was selected. ArcHydro tools composed of edge, junction, waterbody and watershed were used to construct hydro-network. ArcHydro Model was then designed and the network was successfully built using the HydroID. Visualization using ArcHydro tools could display table property of each object. ArcHydro Model was linked to Agricultural Water Demamd and Supply Estimation System (AWDS) which developed by Korea Rural Community and Agriculture Corporation (KRC) to extract information of the study area. And menu of supply facilities information, demand analysis and supply analysis constructed for information acquisition and visualization of acquired informations.

  • PDF

Affecting Discharge of Flood Water in Paddy Field from Selecting Rainfall with Fixed and Unfixed Duration (고정, 임의시간 강우량 선택에 따른 농경지 배수 영향 분석)

  • Hwang, Dong Joo;Kim, Byoung Gyu;Shim, Jwa Keun
    • KCID journal
    • /
    • v.19 no.1
    • /
    • pp.64-76
    • /
    • 2012
  • Recently, it has been increased disaster of crops and agricultural facilities with climate change such as regional storm, typhoon. However agricultural facilities have unsafe design criteria of improving drainage corresponding to this change. This study has analyzed the impact that inundation area and magnitude of drainage-facility is decided based on fixed- and unfixed-duration precipitation by applying revised design criteria of drainage for climate change. The result was shown that 1-day and 2-days rainfall for 20-years return period has increased about 11.4%, 4.4% respectively by changing fixed- to unfixed duration. And the increase rate of design flood was 15.0%. The result was also shown that Inundation area was enlarged by 6.6% as well as increased inundation duration under same basic condition in designed rainfall between fixed- and unfixed-duration. According to the analysis, it is necessary for pump capacity in unfixed-duration to be increased by 70% for same effect with fixed-duration. Therefore, when computing method of probability precipitation is changed from fixed one to unfixed-duration by applying revised design criteria, there seems to be improving effect in drainage design. Because 1440-minutes rainfall for 20-years return period with unfixed-duration is more effective than 1-day rainfall for 30-years return period with fixed-duration. By applying unfixed-duration rainfall, capacity of drainage facilities need to be expanded to achieve the same effects (Inundation depth & duration) with fixed-duration rainfall. Further study is required for considering each condition of climate, topography and drainage by applying revised design criteria.

  • PDF

Development of Extraction Technique for Irrigated Area and Canal Network Using High Resolution Images (고해상도 영상을 이용한 농업용수 수혜면적 및 용배수로 추출 기법 개발)

  • Yoon, Dong-Hyun;Nam, Won-Ho;Lee, Hee-Jin;Jeon, Min-Gi;Lee, Sang-Il;Kim, Han-Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.4
    • /
    • pp.23-32
    • /
    • 2021
  • For agricultural water management, it is essential to establish the digital infrastructure data such as agricultural watershed, irrigated area and canal network in rural areas. Approximately 70,000 irrigation facilities in agricultural watershed, including reservoirs, pumping and draining stations, weirs, and tube wells have been installed in South Korea to enable the efficient management of agricultural water. The total length of irrigation and drainage canal network, important components of agricultural water supply, is 184,000 km. Major problem faced by irrigation facilities management is that these facilities are spread over an irrigated area at a low density and are difficult to access. In addition, the management of irrigation facilities suffers from missing or errors of spatial information and acquisition of limited range of data through direct survey. Therefore, it is necessary to establish and redefine accurate identification of irrigated areas and canal network using up-to-date high resolution images. In this study, previous existing data such as RIMS (Rural Infrastructure Management System), smart farm map, and land cover map were used to redefine irrigated area and canal network based on appropriate image data using satellite imagery, aerial imagery, and drone imagery. The results of the building the digital infrastructure in rural areas are expected to be utilized for efficient water allocation and planning, such as identifying areas of water shortage and monitoring spatiotemporal distribution of water supply by irrigated areas and irrigation canal network.

The Engineering Services on the Go Cong Water Control Project in Vietnam (월남국 고콩지구 수리 개발 기본 조사)

  • 조용칠
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.4
    • /
    • pp.2471-2478
    • /
    • 1971
  • Go Cong Water Control Project was conducted on its preliminary survey and design by Agricultural development Corporation for the Korean Government, an Executing Agency, and Directorate of Irrigation and Rural Engineering of the Ministry of Land Reform, Agriculture and Fishery Development for the Vietnamese Government, a cooperation Agency, under Korean and Vietnamese Economic and Technical Cooperation Program. The main purposes of the project are aimed at the improvements of irrigation and drainage, and salt water prevention of the Go Cong area located at northern part of the Mekong Delta. All the works from field survey through design to preparing reports were carried out by ADC alone and recently Korean Government submitted the relevant reports to vietnamese Government through official channel. The contents of the project are summarized as following: 1. The project comprises irrigation, drainage and salt water prevention facilities on the benefited area of about 55,000 hectares, covering Go Cong and Dinh Tuong(My Tho) Provinces and it will be possible to cultivate rice cropping twice a year, irrigating all the area in the dry season; 2. With completion of this project, annual production of rough rice and vegetables are anticipated to increase by 222,600 .T. and 142,600 M.T. respectively and the internal rateof return stants at 26 per cent, applying for the exchange rate of US $ 1 to VN $ 275. 3. Total investments required for the project are estimated at US $ 56,394,000 of which actual construction cost is estimated at US $ 39,183,000. The project has planned to be d to be developed by four stages, taking bout 7 years. 4. The project needs for three places of pumping plants. 57Km of feed and main irrigation canals, 81Km of drainage channels, 97Km of dike, 23 places of sluices and navigation locks, etc.

  • PDF

Analysis of spatial characteristics and irrigation facilities of rural water districts

  • Mikyoung Choi;Kwangya Lee;Bosung Koh;Sangyeon Yoo;Dongho Jo;Minchul La;Sangwoo Kim;Wonho Nam
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.903-916
    • /
    • 2023
  • This study aims to establish basic data for efficient management of rural water by analyzing regional irrigation facilities and benefitted areas in the statistical yearbook of land and water development for agriculture at the watershed level. For 511 domestic rural water use areas, water storage facilities (reservoirs, pumping & drainage stations, intake weirs, infiltration galleries, and tube wells) are spatially distributed, and the benefitted areas provided at the city/county level are divided by water use area to provide agricultural water supply facilities. The characteristics of rural water district areas such as benefitted area, were analyzed by basin. The average area of Korea's 511 rural water districts is 19,638 ha. The average benefitted area by rural water district is 1,270 ha, with the Geum River basin at 2,220 ha and the Yeongsan River basin at 1,868 ha, which is larger than the overall average. The Han River basin at 807 ha, the Nakdong River basin at 1,121 ha, and the Seomjing River basin at 938 ha are smaller than the overall average. The results of this basic analysis are expected to be used to set the direction of various supply and demand management projects that take into account the rational and scientific use and distribution of rural water and the characteristics of water use areas by presenting a quantitative definition of Korea's agricultural water districts.

A Study on Conditions of Small Fishing Village & Fishing Port and Development Way (논문 - 중소 어항 및 배후지역 실태와 유형별 정비방안)

  • Yun, Sang-Hun;Kim, Jin-Hwan;Jun, Teak-Ki
    • KCID journal
    • /
    • v.18 no.2
    • /
    • pp.122-141
    • /
    • 2011
  • The purpose of this study was to analyze the conditions of small fishing village & fishing port and to suggest the development direction of them. For this, we tried to field survey and research of development demands for 100 sample places. The results of this study were as follows; First, Small fishing villages & fishing ports have different characteristics and their primary industry was a fisheries. And they have a poor condition for basic facilities and industrial facilities, more smaller fishing port. Second, The living satisfaction of residents was decreased gradually because of a decrease in amount of catching fish, a population aging and etc. Residents and public officers was to demand an expansion of basic facilities, an investment of national expenditure and a simplification of administrative procedure. Third, We could establish the development directions by geographical location and funcion of them. And They must development consider their characteristics.

  • PDF

Investigation and Complementary Measures Establishment for Flood on Tidal Reclaimed Paddy Fields (간척지 논 침수 원인 조사와 방재 대책 수립)

  • Jeong, Ju-Hong;Yoon, Kwang-Sik;Choi, Soo-Myung;Yoon,, Suk-Gun;Go, Young-Bae;Kim, Young-Taek
    • KCID journal
    • /
    • v.17 no.2
    • /
    • pp.105-114
    • /
    • 2010
  • Tidal land reclamation provided water resources and land for agriculture and contributed stable crop production. However, climate change by global warming disrupts the hydrologic circulatory system of the earth resulting in sea level rise and more frequent flood for reclaimed arable land. Recently, Suyu reclaimed paddy field in Jindo-gun experienced prolonged inundation after heavy rainfall and there is a growing risk of flood damage. Onsite survey and flood analysis using GATE_Pro model of Korea Rural Corporation were conducted to investigate causes of flooding. To perform the analysis, input data such as inflow hydrograph, the lowest elevation of paddy field, neap tide level, management level of Gunnae estuary lake at the time of the flood were collected. Flood analysis confirmed that current drainage facilities are not enough to prevent 20year return period flood. The result of analysis showed flooding more than 24hours. Therefore, flood mitigation alternatives such as sluice gate expansion, installation drainage pumping station, refill paddy land, and catch canal were studied. Replacing drainage culvert of Suyu dike to sluice gate and installing drainage pumping station at the Gunne lake were identified as an effective flood control measures. Furthermore, TM/TC (SCADA) system and expert for gate management are required for the better management of drainage for estuary dam and flood mitigation.

  • PDF