• Title/Summary/Keyword: drag performance

Search Result 451, Processing Time 0.1 seconds

Application of the Goore Scheme to Turbulence Control for Drag Reduction(I) -Improvement of the Goore Schme-

  • Lee, Chang-Hun;Kim, Nam-Hyeon;Kim, Jun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1572-1579
    • /
    • 2001
  • We investigate the possibility of application of the Goore Scheme to turbulence control for drag reduction. In Part I, we examine the performance of the original Goore Scheme by applying it to a si mple one-dimensional problem. For the application of the scheme to turbulence control, we extend the scheme's capability so that it can treat multi-dimensional problems and examine its validity theoretically. The convergence of the extended scheme with a dynamic memory is faster by an order of magnitude than the original scheme. In Part II, we apply the proposed scheme to reduce drag for turbulent channel flows through direct numerical simulation.

  • PDF

A Study on the Pumping Performance of a Helical-type Molecular Drag Pump (헬리컬형 분자 드래그 펌프의 유동특성에 관한 연구)

  • Kim, Do-Haeng;Kwon, Myoung-Keun;Hwang, Young-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2723-2728
    • /
    • 2008
  • The present study is numerically and experimentally performed to reveal the pumping characteristics of a helical-type molecular drag pump (HTDP) in the molecular transition flow region. In the experimental study, the pressures are measured simultaneously at the 5 positions along the helical channel of rotor under various conditions of outlet pressure and throughputs, and nitrogen is used as test gas. The outlet pressure is in the range of 26-533 Pa. As results, the local pressure changes are checked corresponding to the various outlet pressure and throughput of HTDP. In the numerical study, Navier-Stokes equations with slip boundary conditions are employed (Re< 1000, Kn< 0.1). The local pressure distribution and the pumping speed are calculated. The numerical results are compared with the experimental results. The numerically computed value agrees with the experimental data within an error of approximately 5%.

  • PDF

Aerodynamic Performance of Gurney Flap (Gurney 플?의 공기역학적 성능)

  • Yoo, Neung-Soo;Jung, Sung-Woong
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.335-341
    • /
    • 1998
  • A numerical investigation was performed to determine the effect of a Gurney flap on a NACA 23012 airfoil. A Navier-Stokes code, RAMPANT, was used to calculate the flow field about airfoil. The fully turbulent results were obtained using the standard $k-{\varepsilon}$ two-equation turbulence model. To provide a check case for our computational method, computations were performed for NACA 4412 airfoil which compared with Wedcock's experimental data. Gurney flap sizes of 0.5, 1.0, 1.5, and 2% of the airfoil chord were studied. The numerical solutions showed the Gurney flap increased both lift and drag. These results suggested that the Gurney flap served to increased the effective camber of the airfoil. But Gurney flap provided a significant increase in lift-to-drag ratio relatively at low angle of attack and for high lift coefficient. Also, it turned out that 0.5% chord size of flap was best one among them.

  • PDF

Verification of CFD analysis methods for predicting the drag force and thrust power of an underwater disk robot

  • Joung, Tae-Hwan;Choi, Hyeung-Sik;Jung, Sang-Ki;Sammut, Karl;He, Fangpo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.269-281
    • /
    • 2014
  • This paper examines the suitability of using the Computational Fluid Dynamics (CFD) tools, ANSYS-CFX, as an initial analysis tool for predicting the drag and propulsion performance (thrust and torque) of a concept underwater vehicle design. In order to select an appropriate thruster that will achieve the required speed of the Underwater Disk Robot (UDR), the ANSYS-CFX tools were used to predict the drag force of the UDR. Vertical Planar Motion Mechanism (VPMM) test simulations (i.e. pure heaving and pure pitching motion) by CFD motion analysis were carried out with the CFD software. The CFD results reveal the distribution of hydrodynamic values (velocity, pressure, etc.) of the UDR for these motion studies. Finally, CFD bollard pull test simulations were performed and compared with the experimental bollard pull test results conducted in a model basin. The experimental results confirm the suitability of using the ANSYS-CFX tools for predicting the behavior of concept vehicles early on in their design process.

Simulation of Conceptual Designs of a Three-Surface Stealth Strike Fighter

  • Kuizhi, Yue;ShiChun, Chen;Wenlin, Liu;Dazhao, Yu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.4
    • /
    • pp.366-373
    • /
    • 2014
  • A conceptual design of a three-surface strike fighter was studied and stealth performance was taken into account to enhance survivability and battle effectiveness. CATIA was used to design the aircraft's three-dimensional prototype model and the weapon carriage arrangement was also studied. The aircraft's RCS characteristics and distributions under X, S, C, and L bands were simulated using the RCSPlus software, which is based on the PO method. Pressure and velocity distributions of the flow field were also simulated using CFD. A turbulence model was based on standard $k-{\varepsilon}$ function and N-S functions were used during the CFD computation. Lift coefficients, drag coefficients, and lift-to-drag ratio were obtained by aerodynamic simulation. The results showed that: (1) the average value of head-on RCS between ${\pm}30^{\circ}$ is below -3.197 dBsm, and (2) the lift coefficient is 0.34674, the drag coefficient is 0.04275, and the lift-to-drag ratio is 8.11087 when the attack angle is $2.5^{\circ}$.

CFD PREDICTION OF AERODYNAMIC DRAG ACTING ON ALPINE DOWNHILL SKIER (알파인 스키 활강 선수에 작용하는 공기 저항 예측)

  • Kim, J.S.;Cho, T.S.;Ahn, H.T.
    • Journal of computational fluids engineering
    • /
    • v.21 no.3
    • /
    • pp.71-76
    • /
    • 2016
  • In speed skiing, aerodynamic forces play an important role in determining performance of the skier. To predict aerodynamic effects of the posture of the skier on alpine downhill skiing, we constructed equation of motion of the skier and performed the corresponding CFD simulations. Comparing drag and lift of three different skier postures, it has been shown that drag decreases significantly by tucking upper body to lower body and stretching arms forward. Also, aerodynamic lift which worked as downforce in standing posture worked upward in tuck posture, reducing friction force between snow and ski. This indicates that tuck posture have advantages over standing posture in dual mechanism, namely by reducing drag and also increasing lift. By this two-dimensional initial study we could reveal the general tendency of the aerodynamic force over the skier's body. This study not only provides a theoretical foundation for the athletes to understand the aerodynamic effects of skier postures but also shed a light on towards more accurate and rational three-dimensional CFD simulation of skiers in the near future study.

Wind Tunnel Test of an Unmanned Aerial Vehicle (UAV)

  • Chung, Jin-Deog;Lee, Jang-Yeon;Sung, Bong-Zoo;Koo, Sa-Mok
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.776-783
    • /
    • 2003
  • A low speed wind tunnel test was conducted for full-scale model of an unmanned aerial vehicle (UAV) in Korea Aerospace Research Institute (KARI) Low Speed Wind Tunnel(LSWT). The purpose of the presented paper is to illustrate the general aerodynamic and performance characteristics of the UAV that was designed and fabricated in KARI. Since the testing conditions were represented minor portions of the load-range of the external balance system, the repeatability tests were performed at various model configurations to confirm the reliability of measurements. Variations of drag-polar by adding model components such as tails, landing gear and test boom are shown, and longitudinal and lateral aerodynamic characteristics after changing control surfaces such as aileron, flap, elevator and rudder are also presented. To explore aerodynamic characteristics of an UAV with model components build-up and control surface deflections, lift curve slope, pitching moment variation with lift coefficients and drag-polar are examined. The discussed results might be useful to understand the general aerodynamic characteristics and drag pattern for the given UAV configuration.

Gyroscopic Stability and Drag Characteristics Study of Canard-Installed Course Correction Munition (조종날개가 장착된 탄도수정탄의 자이로안정성 및 항력 특성 연구)

  • Bae, Ju Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.376-383
    • /
    • 2017
  • This paper describes the gyroscopic stability and the drag characteristics of the smart munition with a course correction fuze(CCF). A ballistic analysis was conducted to figure out the effect of the canards on the gyroscopic stability of the projectile. The analysis used the commercial ammunition performance evaluation software: Projectile Design and Analysis System(PRODAS). In particular, we compared the PRODAS analysis results to real field test results to investigate the influence of the CCF mounted projectile. In addition, some ballistic simulations were carried out to provide the conditions suitable for wind tunnel tests. Experimental results show that the added drag force by the canards is almost uniform regardless of the Mach number when the projectile is at the normal position where the angle of rotation and the angle of attack are both 0 degrees. However, as the angle of attack of the projectile increases, the additional drag force depends on the deflection of the canards.

Endplate effect on aerodynamic characteristics of three-dimensional wings in close free surface proximity

  • Jung, Jae Hwan;Kim, Mi Jeong;Yoon, Hyun Sik;Hung, Pham Anh;Chun, Ho Hwan;Park, Dong Woo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.477-487
    • /
    • 2012
  • We investigated the aerodynamic characteristics of a three-dimensional (3D) wing with an endplate in the vicinity of the free surface by solving incompressible Navier-Stokes equations with the turbulence closure model. The endplate causes a blockage effect on the flow, and an additional viscous effect especially near the endplate. These combined effects of the endplate significantly reduce the magnitudes of the velocities under the lower surface of the wing, thereby enhancing aerodynamic performance in terms of the force coefficients. The maximum lift-to-drag ratio of a wing with an endplate is increased 46% compared to that of wing without an endplate at the lowest clearance. The tip vortex of a wing-with-endplate (WWE) moved laterally to a greater extent than that of a wing-without-endplate (WOE). This causes a decrease in the induced drag, resulting in a reduction in the total drag.

Numerical Analysis of Ship Local Resistance (선체 국소 저항 수치 해석)

  • Park, Dong-Woo;Seo, Jang-Hoon;Yoon, Hyun-Sik;Chun, Ho-Hwan;Jung, Jae-Hwan;Kim, Mi-Jeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.74-79
    • /
    • 2012
  • The present study aims at suggesting the systematic approach to analyze the local drag components as the resistance performance characterized by the flow of the ship. In order to identify the local areas, the hull surface is decomposed into SVM (Station-Vertical Section Map) which consists of 20 stations along the longitudinal direction and 20 sections along the vertical direction (from the bottom to the waterline). Successively, on the SVM, the friction and pressure drag coefficients as the components of total drag coefficient have been analyzed for two different hull forms of Wigley and KVLCC by using CFD.