• Title/Summary/Keyword: drag

Search Result 2,266, Processing Time 0.03 seconds

Drag Reduction in Turbulent Channel flow with Periodically Arrayed Heating and Cooling Strips (난류 채널 내 냉·열판 부착에 의한 마찰저항 감소)

  • Yoon, Hyun-Sik;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.608-618
    • /
    • 2005
  • A new technique giving significant drag reduction in turbulent shear flows has been proposed by using the buoyancy effect to generate periodic spanwise motion. Such spanwise motion can be obtained by arranging heating and cooling strips periodically aligned in the spanwise direction of a vertical channel, where the streamwise mean flow is perpendicular to the gravity vector The strip size has been changed in order to obtain the optimum size corresponding to the maximum drag reduction. The bulk Reynolds number, $ Re_{m} = U_{m} \delta / \nu \$ is fixed at 2270 while Grashof numbers is changed between $10^{6}$ to $10^{7}$. As Grashof number increases, considerable drag reduction can be obtained, At the highest Grashof number, an optimum strip size of about 250 wail units gives drag reduction of about 35$\%$. The greater the Grashof number, the smaller the strip size attains the maximum drag reduction.

Drag Reduction Effect by Counter-flow Jet on Conventional Rocket Configuration in Supersonic/Hypersonic Flow

  • Kim, Yongchan;Kim, Duk-Min;Roh, Tae-Seong;Lee, Hyoung Jin
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.4
    • /
    • pp.18-24
    • /
    • 2020
  • The counter-flow jet from a supersonic/hypersonic vehicle causes a structural change in the shock wave generated around the aircraft, which can lead to reduced drag and heat loads. Since the idea is to mount a counter-flow jet device for drag reduction in the aircraft, it is necessary to understand the effect of such a device on the entire aircraft. In this study, the effect of drag reduction due to counter-flow jet on a conventional rocket configuration was analyzed through CFD analysis. The results showed that the drag reduction effect was the largest in the blunt region and that the counter-flow jet also affected the downstream of the aircraft. The analysis indicated that the drag reduction effect by the counter-flow jet was about 10 to 25 % when targeting the entire rocket-shaped area, while the effect was as high as 50% when targeting only blunt objects.

Application of Polymer Induced Drag Reduction to OTEC System (고분자로 인한 마찰저항 감소의 OTEC시스템 응용)

  • Kim, C.A.;Sung, J.H.;Choi, H.J.;Chun, W.;Kim, S.;Kim, C.B.;Kim, H.T.
    • Solar Energy
    • /
    • v.18 no.4
    • /
    • pp.1-10
    • /
    • 1998
  • Polymer induced turbulent drag reduction in a rotating disk apparatus was investigated using four different molecular weights of poly(ethylene oxide)(PEO) in a synthetic seawater solution for the purpose of potential application to the cold water piping in the Ocean Thermal Energy Conversion(OTEC) system. To apply drag reduction to the OTEC we measured the temperature dependence on the drag reduction efficiency. From this study, it was found that the drag reduction efficiency increases with the temperature and the concentration. To measure the drag reduction efficiency during the operation period, the drag reduction behavior was detected as a function of time and the results obtained from the experiment was compared to the Brostow's model equation.

  • PDF

An experimental study on two-phase flow resistances and interfacial drag in packed porous beds

  • Li, Liangxing;Wang, Kailin;Zhang, Shuangbao;Lei, Xianliang
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.842-848
    • /
    • 2018
  • Motivated by reducing the uncertainties in quantification of debris bed coolability, this paper reports an experimental study on two-phase flow resistances and interfacial drag in packed porous beds. The experiments are performed on the DEBECO-LT (DEbris BEd COolability-Low Temperature) test facility which is constructed to investigate the adiabatic single and two phase flow in porous beds. The pressure drops are measured when air-water two phase flow passes through the porous beds packed with different size particles, and the effects of interfacial drag are studied especially. The results show that, for two phase flow through the beds packed with small size particles such as 1.5 mm and 2 mm spheres, the contribution of interfacial drag to the pressure drops is weak and ignorable, while the significant effects are conducted on the pressure drops of the beds with bigger size particles like 3 mm and 6 mm spheres, where the interfacial drag in beds with larger particles will result in a descent-ascent tendency in the pressure drop curves along with the fluid velocity, and the effect of interfacial drag should be considered in the debris coolability analysis models for beds with bigger size particles.

A Study on Performance Characteristics of Drag Improvement Device(1-D Trajectory Correction Device) (항력증가장치 (1-D Trajectory Correction Device)의 성능 특성에 관한 연구)

  • Jung Soo-In;Kim Kui-Soon;Hong Kung-Mung;Beak Ki-Bong;Yun Won-Kun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.146-154
    • /
    • 2004
  • In this study, numerical analysis has been performed to investigate the flow characteristics of a drag improvement device which is designed to achieve accurate impact point. The drag increase due to drag improvement device has been analyzed. And the effect of spread angle and location of drag improvement device has also been investigated. The drag improvement device with 20 degree spread angle increased the drag 3.5 times. The corresponding weight of the device is found out to be 26g.

  • PDF

Fairing Design Optimization of Missile Hanger for Drag Reduction (유도탄 행거 항력 저감을 위한 페어링 형상 최적화)

  • Jeong, Sora
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.527-535
    • /
    • 2019
  • Hanger in a rail-launched missile protrudes in general and causes to increase significant drag force. One method to avoid the significant increase of drag force is to apply fairings on the hanger. In this paper, sloping shaped fairing parameters of height, width, and length are optimized to minimize the drag force under subsonic speed region by examining three configurations of fairings : front-fairing only, rear-faring only, and the both front and rear fairing. We use Latin Hypercube Sampling method to determine the experimental points, and computational fluid dynamics with incompressible RANS solver was applied to acquire the data at sampling points. Then, we construct a meta model by kriging method. We find the best choice among three configurations examined : both front and rear fairing reduce the drag force by 63 % without the constraint of fairing mass, and front fairing reduced the drag force by 52 % with the constraint of hanger mass.

Fluctuating lift and drag acting on a 5:1 rectangular cylinder in various turbulent flows

  • Yang, Yang;Li, Mingshui;Yang, Xiongwei
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.137-149
    • /
    • 2022
  • In this paper, the fluctuating lift and drag forces on 5:1 rectangular cylinders with two different geometric scales in three turbulent flow-fields are investigated. The study is particularly focused on understanding the influence of the ratio of turbulence integral length scale to structure characteristic dimension (the length scale ratio). The results show that both fluctuating lift and drag forces are influenced by the length scale ratio. For the model with the larger length scale ratio, the corresponding fluctuating force coefficient is larger, while the spanwise correlation is weaker. However, the degree of influence of the length scale ratio on the two fluctuating forces are different. Compared to the fluctuating drag, the fluctuating lift is more sensitive to the variation of the length scale ratio. It is also found through spectral analysis that for the fluctuating lift, the change of length scale ratio mainly leads to the variation in the low frequency part of the loading, while the fluctuating drag generally follows the quasi-steady theory in the low frequency, and the slope of the drag spectrum at high frequencies changes with the length scale ratio. Then based on the experimental data, two empirical formulas considering the influence of length scale ratio are proposed for determining the lift and drag aerodynamic admittances of a 5:1 rectangular cylinder. Furthermore, a simple relationship is established to correlate the turbulence parameter with the fluctuating force coefficient, which could be used to predict the fluctuating force on a 5:1 rectangular cylinder under different parameter conditions.

Minimization of wind load on setback tall building using multiobjective optimization procedure

  • Bairagi, Amlan Kumar;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • v.35 no.3
    • /
    • pp.157-175
    • /
    • 2022
  • This paper highlights the minimization of drag and lift coefficient of different types both side setback tall buildings by the multi-objective optimization technique. The present study employed 48 number both-side setback models for simulation purposes. This study adopted three variables to find the two objective functions. Setback height and setback distances from the top of building models are considered variables. The setback distances are considered between 10-40% and setback heights are within 6-72% from the top of the models. Another variable is wind angles, which are considered from 0° to 90° at 15° intervals according to the symmetry of the building models. Drag and lift coefficients according to the different wind angles are employed as the objective functions. Therefore 336 number population data are used for each objective function. Optimum models are compared with computational simulation and found good agreements of drag and lift coefficient. The design wind angle variation of the optimum models is considered for drag and lift study on the main square model. The drag and lift data of the square model are compared with the optimum models and found the optimized models are minimizing the 45-65% drag and 25-60% lift compared to the initial square model.

AERODYNAMIC EFFECT OF ROOF-FAIRING SYSTEM ON A HEAVY-DUTY TRUCK

  • KIM C. H.;YOUN C. B.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.221-227
    • /
    • 2005
  • Aim of this study is to investigate an aerodynamic effect of a drag-reducing device on a heavy-duty truck. The vehicle experiences two different kinds of aerodynamic forces such as drag and uplifting force (or downward force) as it is traveling straight forward at constant speed. The drag force on a vehicle may cause an increase of the rate of fuel consumption and driving instability. The rolling resistance of the vehicle may be increased as result of the negative uplifting or downward force on the vehicle. A device named roof-fairing system has been applied to examine the reduction of aerodynamic drag force on a heavy-duty truck. As for a engineering design information, the drag-reducing system should be studied theoretically and experimentally for the best efficiency of the device. Four different types of roof-fairing model were considered in this study to investigate the aerodynamic effect on a model truck. The drag and downward force generated by vehicle has been obtained from numerical calculation conducted in this study. The forces produced on four fairing models considered in this study has been compared each other to evaluate the best fairing model in terms of aerodynamic performance. The result shows that the roof-fairing mounted truck has bigger negative uplifting or downward force than that of non-mounted truck in all speed ranges, and drag force on roof-fairing mounted truck has smaller than that of non-mounted truck. The drag coefficient $(C_D)$ of the roof-fairing mounted truck (Model-3) is reduced up to $41.3\%$ than that of non-mounted trucks (Model-1). A downward force generated by a roof-fairing mounted on a truck is linearly proportional to the rolling resistance force. Therefore, the negative lifting force on a heavy-duty truck is another important factor in aerodynamic design parameter and should be considered in the design of a drag-reducing device of a tractor-trailer. According to the numerical result obtained from present study, the drag force produced by the model-3 has the smallest of all in all speed ranges and has reasonable downward force. The smaller drag force on model-3 with 2/3h in height may results of smallest thickness of boundary layer generated on the topside of the container and the lowest intensity of turbulent kinetic energy occurs at the rear side of the container.

Drag Prediction of Elliptic Airfoil (타원형 에어포일의 항력 예측)

  • Kim C. W.;Park Y. M.;Kwon K. J.;Lee J. Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.23-26
    • /
    • 2004
  • Drag prediction is sought for the aifoil having laminar and turbulent flow characteristics with CFD code being unable to predict transition to turbulent flow. Laminar flow simulation presents some insight to the transition position. Separate simulations with laminar and turbulent flow and their combination estimate the drag of the airfoil containing laminar and turbulent flow characteristics.

  • PDF