• 제목/요약/키워드: drag

검색결과 2,273건 처리시간 0.027초

비행시험과 전산해석을 통한 소형무인기 항력 예측 (In-Flight and Numerical Drag Prediction of a Small Electric Aerial Vehicle)

  • 진원진;이융교
    • 한국항공운항학회지
    • /
    • 제23권2호
    • /
    • pp.51-56
    • /
    • 2015
  • This paper presents the procedure of drag prediction for EAV-1, based on a numerical analysis correlated to an in-flight test. EAV-1, developed by Korea Aerospace Research Institute, is a small-sized UAV to test a hydrogen-fuel cell power system. The long-endurance test flight of 4.5 hours provides numerous in-flight data. The thrust and drag of EAV-1 during the flight test are estimated based on the wind-tunnel test results for EAV-1's propeller performance. In addition, the CFD analysis using a commercial Navier-Stokes code is carried out for the full-scale EAV-1. The computational result suggests that the initial CFD analysis substantially under-predicts the in-flight drag in that the discrepancy is up to 27.6%. Therefore, additional investigation for more accurate drag prediction is performed; the effect of propeller slipstream is included in the CFD analysis through "fan disk" modelling. Also, the additional drag from airplane trim and load factor that actually exists during the flight test in a circular path is considered. These supplemental analyses for drag prediction turn out to be effective since the drag discrepancy reduces to 2.3%.

진공튜브 내 초고속열차의 공기저항 파라메타 연구 - 2 (Parametric Study on the Aerodynamic Drag of Ultra High-speed Train in Evacuated Tube - Part 2)

  • 권혁빈;남성원;김동현;장용준;강부병
    • 한국철도학회논문집
    • /
    • 제13권1호
    • /
    • pp.51-57
    • /
    • 2010
  • 본 연구에서는 진공튜브 내 초고속열차의 공기저항을 전산유체역학을 이용하여 계산하였으며, 튜브-열차 시스템의 주요 시스템 파라메타인 열차 속도, 공기밀도, 터널 직경을 변화시켜가면서 공기저항의 변화를 살펴보았다. 튜브 내에서의 열차 공기저항은 속도의 제곱보다 더 급격히 증가하며, 튜브 직경이 증가함에 따라 감소하는 경향을 보였으며, 공기밀도가 감소함에 따라 개활지와 마찬가지로 거의 선형적으로 감소하는 특성을 보여주었으며, 특정 파라메타 공간에 대하여 파라메타에 따른 공기저항 변화의 불규칙성이 다소 나타났다.

무베어링 로터 허브 형상에 대한 요구도 분석 및 항력 예측 (Requirement Analysis and Drag Prediction for the Aerodynamic Configuration of a Bearingless Rotor Hub)

  • 강희정
    • 항공우주기술
    • /
    • 제11권1호
    • /
    • pp.19-26
    • /
    • 2012
  • 무베어링 로터 허브시스템 개발에서 할당된 공기역학적 허브 항력 요구도를 분석하여, 요구도에서 제시된 방법으로 입증 가능하도록 요구도를 구체화 시켰다. 초기 허브 형상에 대해 공력계수에 기반하여 항력 예측을 수행하였으며, 요구도 충족을 위한 설계 변경안을 제시하였다. 최종 형상에 대해 전산유체기법을 사용하여 항력 예측을 수행하였으며, 그 결과 구체화된 요구도를 만족시킴을 확인할 수 있었다. 또한 기 개발된 헬리콥터의 추세선으로부터 유추할 수 있는 허브 항력의 범위 내에 있음을 확인할 수 있다.

수평 2상유동에서 마찰저항감소에 관한 연구 (A study on the drag reduction in a horizontal two phase flow)

  • 차경옥;김재근
    • 대한기계학회논문집B
    • /
    • 제20권4호
    • /
    • pp.1472-1480
    • /
    • 1996
  • The phenomena of drag reduction using small quantities of a linear macromolecules has attracted the attention of experimental investigations. It is well known that drag reduction in single phase liquid flow is affected by polymer materials, molecular weight, polymer concentration, pipe diameter and flow velocity. But the research on drag reduction in two phase flow has not intensively investigated. Drag reduction can be applied to phase change system such as chemical reactor, pool and boiling flow, and to flow with cavitation which occurs pump impellers. The purpose of the present work is to evaluate the drag reduction by measuring pressure drop, mean liquid velocity, and turbulent intensity and determine the effects of polymer additives on drag reduction in horizontal two phase flow. Experimental results show higher drag reduction using co-polymer comparing with using polyacrylamide. Mean liquid velocities increase as adding more polymer, and turbulent intensities decrease as the distance for the wall in inversed.

대형트럭용 루프 훼어링과 디프렉트의 공기저항력 저감 특성에 관한 연구 (An Effect of Roof-Fairing and Deflector System on the Reduction of Aerodynamic Drag of a Heavy-Duty Truck)

  • 김철호
    • 한국자동차공학회논문집
    • /
    • 제14권2호
    • /
    • pp.194-201
    • /
    • 2006
  • Roof-fairing and deflector system have been used on heavy-duty trucks to minimize aerodynamic drag force not only for driving stability of the truck but also for energy saving by reducing the required driving power of the vehicle. In this study, a numerical simulation was carried out to see aerodynamic effect of the drag reducing device on the model vehicle. Drag and lift force generated on the five different models of the drag reducing system were calculated and compared them each other to see which type of device is efficient on the reduction of driving power of the vehicles quantitatively. An experiment has been done to see airflow characteristics on the model vehicles. Airflow patterns around the model vehicles were visualized by smoke generation method to compare the complexity of airflow around drag reducing device. From the results, the deflector systems(Model 5,6) were revealed as a better device for reduction of aerodynamic drag than the roof-fairing systems(Model 2,3,4) on the heavy-duty truck and it can be expected that over 10% of brake power of an engine can be saved on a tractor-trailer by the aerodynamic drag reducing device at normal speed range($80km/h{\sim}$).

습식 클러치 드래그 토크 특성의 실험적 평가 (Experimental Assessment of Drag Torque of Wet Clutch)

  • 김한솔;정구현
    • Tribology and Lubricants
    • /
    • 제33권6호
    • /
    • pp.269-274
    • /
    • 2017
  • Currently, fuel efficiency becomes one of critical issues for automotive industries as concerns about environmental and energy problems grow. In an automatic transmission of an automobile, a drag torque due to a viscous drag of a fluid between friction and clutch plates is one of factors that degrade fuel economy. In this work, the drag torque characteristics of a wet clutch was experimentally investigated with respect to rotational speed, temperature of automatic transmission fluid (ATF), and gap between friction and clutch plates. The experimental results showed that drag torque increases to a certain level, and then decrease to the steady state value with increasing rotational speed. This behavior may be associated with two-phase flow of air and ATF at gap between friction and clutch plates. Also, it was found that the maximum drag torque value decreased as ATF viscosity decreases with increasing temperature. However, it was shown that the point at which the maximum drag torque occurs was not significantly affected by the ATF temperature. In addition, maximum drag torque was found to decrease as the gap between friction and clutch plates increased from 0.1 mm to 0.2 mm. Furthermore, it was observed that the generation of maximum drag torque was delayed as the gap increased. The outcomes of this work are expected to be helpful to gain a better understanding of drag torque characteristic of a wet clutch, and may therefore be useful in the design of wet clutch systems with improved performance.

윙렛 형상에 따른 공력 특성 해석 (Aerodynamic Analysis of Various Winglets)

  • 이융교;김철완;심재열
    • 항공우주기술
    • /
    • 제7권1호
    • /
    • pp.24-29
    • /
    • 2008
  • 최근의 유가인상과 관련하여 상업용 및 군용 항공기 운용시의 연료 효율을 높이고자 하는 노력이 가속화되고 있다. 관련 연구에 의하면 수송기와 비즈니스 젯 항공기에 있어서 윙렛은 공력/구조적 효율성을 향상시키고, 적은 중량 증가로 저속 수송기의 상승 성능을 향상시킨다고 보고된 바 있다. 윙렛은 일반적으로 날개 끝에 장착되는 작은 공력면이며, 날개에 수직에 가깝게 장착되어 날개 끝단 와류의 순환 유동장내에서 작용한다. 윙렛의 설계는 위치, 높이, 테이퍼비, 후퇴각, 익형, toe-out 및 켄트각 등 많은 요소를 고려해야 하는 매우 복잡한 과정이다. 최근에는 미국 보잉사의 B737-800과 B787 등의 최신 기종에서 Blended 윙렛을 성공적으로 적용하여 날개끝의 길이를 늘리는 것(Wing Tip Extension) 보다 적은 추가 중량으로 같은 순항 성능을 도출하는데 성공하였다. 윙렛의 점성저항으로 인하여 최소항력은 증가하지만 높은 양력계수에서는 유도항력의 감소로 전체 항력이 감소하게 됨을 알 수 있다. 따라서, 윙렛은 강한 날개끝 와류를 발생시키는 높은 양력계수에서 순항하는 항공기에 더욱 적합하다.

  • PDF

수동제어 장치를 이용한 3 차원 자동차 모형의 항력감소 (Drag Reduction of a Three-Dimensional Car Model Using Passive Control Device)

  • 이욱;사공웅;최해천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2868-2872
    • /
    • 2007
  • In this study, a passive control using a boat-tail device is conducted for a three-dimensional car model in ground proximity. We consider various boat-tails and investigate the mechanism of drag reduction by them. By varying the length and slant angle of boat-tail, we obtain drag reductions up to 40%. From the oil-surface flow visualization and hot-wire measurement, the drag reduction by the boat-tail is characterized by the shear-layer instability and reattachment on the boat-tail, forming a small separation bubble at the upstream part of boat-tail surface, resulting in the delay of main separation and drag reduction. At high slant angles, the flow fully separates and drag is nearly same as that of no control.

  • PDF

MIRA Model 후미의 저저항 최적 설계 (Optimal Design for the Low Drag Tail Shape of the MIRA Model)

  • 허남건;김욱
    • 한국전산유체공학회지
    • /
    • 제4권1호
    • /
    • pp.34-40
    • /
    • 1999
  • Drag reduction on vehicles are the main concern for the body shape designers in order to lower the fuel consumption rate and to aid the driving stability. The drag of bluff bodies like transportation vehicles is mostly pressure drag due to the flow separation, which can be minimized by controlling the location and size of the separation bubble. In the present study, the TURBO-3D code is incorporated with optimal algorithm based on analytical approximation method to obtain an optimal afterbody shape of the MIRA Model corresponding to the lowest drag coefficient. For this purpose three mutually independent afterbody angles are chosen as design variables, while the drag coefficient is chosen as an objective function. It is demonstrated in the present study that an optimal body shape having the lowest drag coefficient which is about 6% lower than that of the original shape has been successfully obtained within number of iterations of tile optimal design loop.

  • PDF

경험적 최적화 기법을 이용한 자동차 공력저항 예측 프로그램 개발 (Development of a Prediction Program of Automotive Aerodynamic Drag Coefficient Using Empirical Optimization Method)

  • 한석영;맹주성;박재용
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.140-145
    • /
    • 2002
  • At present, wind tunnel test or CFD is used for predicting aerodynamic drag coefficient in motor company. But, wind tunnel test requires much cost and time, and CFD has about 30% error. In this study a predicting program of the aerodynamic drag coefficient based on empirical techniques was developed. Also a mathematical optimization method using GRG method was added to the program. The program was applied to six cars. Aerodynamic drag coefficient values of six cars were Predicted with 4.857% average error. The optimization method was also applied to six cars. Three parameters selected from sensitivity analysis were determined to reduce the afterbody drag coefficient to the value established by a designer and when some parameters were changed for a developing automotive, optimal modifiable parameters were determined to preserve the same drag coefficient as the original automotive. It was verified that this program could predict the aerodynamic drag coefficient effectively and accurately, and this program with GRG method could determine optimal values of parameters.

  • PDF