• Title/Summary/Keyword: downwind

Search Result 121, Processing Time 0.03 seconds

Surface Ozone in The Major Cities of Korea : Trends, Diurnal and Seasonal Variations, and Horizontal Distributions (한반도 주요 대도시지역의 지표오존 특성 : 추세, 일변화, 월변화, 수평분포)

  • 오인보;김유근
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.4
    • /
    • pp.253-264
    • /
    • 2002
  • Surface ozone concentrations measured at 40 monitoring sites in three major cities (Seoul, Busan, and Daegu) of Korea during 1993~2000 were analyzed to understand the characteristics of temporal and spatial distributions. Trends were analyzed for annual mean, 95th percentiles of daily 8-hour maximum and days exceeding 8-h ozone standard of 60 ppb. Three indicators exhibited increasing trends (+0.75 ppb yr$^{-1}$ , +2.20 ppb yr$_{-1}$ , and +5.35 days yr$_{-1}$ on average) throughout the study period at all cities. Diurnal and seasonal variations were the largest in Seoul followed by Daegue and Busan, due to the high photochemical production and titration of ozone (Seoul), strong wind and constant supply of background ozone from the ocean (Busan). In the urban centers and industrial areas at all cities, scavenging of ozone by NO reduces the daily 8-hour maximum ozone by 10 ppb on average. High concentrations of ozone have frequently occurred in downwind eastern (Seoul and Daegu) or northern (Busan) sides of the territory. In particular, the coastal area of Busan had relatively high ozone level due to the local sea land breeze circulation. The results indicated that the temporal and spatial variations of ozone concentration were non -uniform and were closely related to the local environments; emission levels, climates, and geographic locations.

STUDY OF THE MARINE CLOUD STRUCTURE WITH AQUA AMSR-E

  • Shoom, Mariya Yu.
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.1007-1010
    • /
    • 2006
  • This study investigates the spatial structure of the total cloud liquid water content Q fields over the Northwest Pacific Ocean during winter monsoon. The distributions of Q have been estimated from the brightness temperatures of the ocean - atmosphere system $T_B(f)$, where f is frequency, measured by AQUA AMSR-E in January -March 2003. Marine strati (St) and stratocumuli (Sc) are typical for winter monsoon season. They were analysed using mainly high-frequency channel at f = 36.5 GHz, vertical polarisation. $T_B$ data were accompanied by the data on near surface wind speed, air temperature and humidity from the nearest meteorological stations. Tow one-dimensional spectra were computed for downwind and crosswind sections of Q fields. The AMSR-E antenna field of view (14-8 km) and the cloud field sizes (100-1000 km) restricted the spatial scales. The results of case study Jan 31 2003 are presented. Scale-invariant spectrum is typical. In the cases of extended St levels a spectral slope equals about -1.7, conforming to classical -5/3 of turbulence theory. For Sc cases the absolute magnitude of spectral slope is rather higher, as a rule. The value is about -2. In the case when cloud streets are presented, a strait line form of spectrum is less reliable with a slope being rather lower (about -1.4).

  • PDF

Evaluation of Contribution Rate of PM Concentrations for Regional Emission Inventories in Korean Peninsula Using Brute-force Sensitivity Analysis (Brute-force 방법을 이용한 한반도 미세먼지 농도에 대한 배출원의 기여도 산출 연구)

  • Lee, Soon-Hwan;Lee, Kang-Yeol
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1525-1540
    • /
    • 2015
  • In order to clarify the contribution rate of PM concentration due to regional emission distribution, Brute force analysis were carried out using numerical estimated PM data from WRF-CMAQ. The emission from Kyeongki region including Seoul metropolitan is the largest contribution of PM concentration than that from other regions except for emission of trans-country and source itself. Contribution rate of self emission is also the largest at Kyeongki region and its rate reach on over 95 %. And the rate at Gangwon region also higher than any region due to synoptic wind pattern. Due to synoptic wind direction at high PM episode, pollutants at downwind area along from west to east and from north to south tends to mix intensively and its composition is also complicated. Although the uncertainty of initial concentration of PM, the contribution of regional PM concentration tend to depend on the meteorological condition including intensity of synoptic and mesoscale wind and PM emission pattern over upwind region.

VOCs Emission Characteristics and Mass Contribution Analysis at Wanju Industrial Area (완주지역의 VOCs 배출특성에 따른 공단지역과 일반지역의 기여도 분석)

  • Kim, Deug-Soo;Yang, Go-Soo;Park, Bi-O
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.5
    • /
    • pp.562-573
    • /
    • 2008
  • Concentrations of volatile organic compounds (VOCs) measured from the local industrial sources in Wanju industrial complex during June $2007{\sim}January$ 2008. The samples were collected from the primary sources (6 emission points) in 4 major factories in Wanju industrial complex as well as two general sources in Wanju County to elucidate the abundances of speciated VOCs and their spacial and temporal distributions depending on source bases. Industrial sources are as follows; fabricated metal manufacture, motor vehicle manufacture, rubber and plastic manufacture, and chemical manufacture factories. Two general source samples were collected from gasoline gas station and dry cleaning shop in urban area. In order to understand the near source influence at receptor, samples from the two receptor sites (one is at center of the industrial complex and the other site is at distance residential area downwind from the center) were collected with sample canister, and analyzed by using GC/MSD. The concentrations from different sources were compared and discussed. The mass contributions of the speciated VOCs to total VOCs measured from industrial sources and ambient ai r at two receptors were presented and discussed.

A Study on Sensitivity of Pollutant Dispersion to Inflow Wind Speed and Turbulent Schmidt Number in a Street Canyon (도시 협곡에서 유입류 풍속과 난류 슈미트수에 대한 대기오염물질 확산의 민감도 연구)

  • Wang, Jang-Woon;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.659-667
    • /
    • 2015
  • In this study, sensitivity of inflow wind speed and turbulent Schmidt number to pollutant dispersion in an urban street canyon is investigated, by comparing CFD-simulated results to wind-tunnel results. For this, we changed systematically inflow wind speed at the street-canyon height ($1.5{\sim}10.0m\;s^{-1}$ with the increment of $0.5m\;s^{-1}$) and turbulent Schmidt number (0.2~1.3 with interval of 0.1). Also, we performed numerical experiments under the conditions that turbulent Schmidt numbers selected with the magnitude of mean kinetic energy at each grid point were assigned in the street canyon. With the increase of the inflow wind speed, the model underestimated (overestimated) pollutant concentration in the upwind (downwind) side of the street canyon because of the increase of pollutant advection. This implies that, for more realistic reproduction of pollutant dispersion in urban street canyons, large (small) turbulent Schmidt number should be assigned for week (strong) inflow condition. In the cases of selectively assigned turbulent Schmidt number, mean bias remarkably decreased (maximum 60%) compared to the cases of constant turbulent Schmidt number assigned. At week (strong) inflow wind speed, root mean square error decreases as the area where turbulent Schmidt number is selectively assigned becomes large (small).

Characteristic Analysis of the Surface Concentration Distribution under the Influence of Particle Settling by Lagrangian Model (Lagrangian 모형에 의한 분진 침강 효과에 따른 지표면 농도의 분포특성 분석)

  • Park, I.S.;Kang, I.G.;Choi, K.D.
    • Journal of Environmental Impact Assessment
    • /
    • v.2 no.1
    • /
    • pp.57-63
    • /
    • 1993
  • An analysis for particle settling effects via of plume centerline tilted exponentially under the influence of panicle settling velocity is carried out for particle of $30{\mu}m$ diameter with $1g/cm^3$ density and 0.02m/s settling velocity corresponding to its particle characteristic according to various wind speeds, atmospheric stabilities. Characteristic analysis of surface concentration distribution simulated by Lagrangian model also are carried out under the influence of plume centerline tilted exponentially at 10m stack height emitted 200 particles per second. This study reveals that plume centerline at the nearby source is sharply tilted exponentially under the condition of stable, weakly wind speed, therefore the lower concentration at the nearby source, the higher concentration at the downwind distance far away from source than actual one is brought out, if not apply the effect of plume centerline tilted exponentially to diffusion Model.

  • PDF

Atmospheric Stability Evaluation at Different Time Intervals for Determination of Aerial Spray Application Timing

  • Huang, Yanbo;Thomson, Steven J.
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.337-341
    • /
    • 2016
  • Purpose: Evaluation of atmospheric conditions for proper timing of spray application is important to prevent off-target movement of crop protection materials. Susceptible crops can be damaged downwind if proper application procedure is not followed. In our previous study, hourly data indicated unfavorable conditions, primarily between evening 18:00 hrs in the evening and 6:00 hrs next morning, during clear conditions in the hot summer months in the Mississippi delta. With the requirement of timely farm operations, sub-hourly data are required to provide better guidelines for pilots, as conditions of atmospheric stability can change rapidly. Although hourly data can be interpolated to some degree, finer resolution for data acquisition of the order of 15 min would provide pilots with more accurate recommendations to match the data recording frequency of local weather stations. Methods: In the present study, temperature and wind speed data obtained at a meteorological tower were re-sampled to calculate the atmospheric stability ratio for sub-hour and hourly recommendations. High-precision evaluation of temperature inversion periods influencing atmospheric stability was made considering strength, time of occurrence, and duration of temperature inversion. Results and Discussion: The results indicated that atmospheric stability could be determined at different time intervals providing consistent recommendations to aerial applicators, thereby avoiding temperature inversion with minimal off-target drift of the sprayed liquid.

Asbestos Concentrations in Ambient Air and Drained Rainwater from Slate Roofing by Construction Year and Roof Area (슬레이트 지붕의 설치년도와 면적에 따른 공기 및 유출 빗물 중의 석면 농도)

  • Jang, Bong-Ki;Ryu, Je-Young;Tak, Hyun-Wook;Song, Su-Jin;Lee, Jong-Wha;Lee, Gang-Ho;Choi, Jae-Ho
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.3
    • /
    • pp.196-204
    • /
    • 2013
  • Objectives: The purpose of this study is to analyze the number and influence factors of asbestos fibers in the air of farmhouses with asbestos cement slate roofing, as well as in rainwater per unit area of the asbestos cement slate roofing. Methods: At a distance of 1 m from the end of asbestos cement slate roofing in 20 farmhouses, the asbestos fiber in the air was collected three times on a clear day downwind from the prevailing wind. Rainwater falling from the slate roofing was collected four times with a 1.05-m rainwater pipe on a rainy day at the 20 farmhouses, filtered with a MCE filter, and analyzed with a phase contrast microscope. Results: The geometric mean of the number of asbestos fibers in the air of farmhouses with slate roofing was 0.11 fiber/L, and no samples exceeded the recommended standard of 10 fiber/L. As a result of multiple regression analysis, a factor which gave a significant influence to the asbestos fiber content in the air was the gross area of slate roofing at the target farmhouses. The number of asbestos fibers included in rainwater collected per 1 m2 of slate roofing was 1,753 fiber/$L{\cdot}m2$. As a result of multiple regression analysis, the number of asbestos fibers contained in rainwater per 1 m2 of slate showed a significantly higher tendency as the year of slate roofing installation at the target farmhouses receded. Conclusions: It was confirmed for the first time in Korea that asbestos from asbestos cement slate roofing scatters into the air.

On Surface Ozone Observed in the Seoul Metropolitan Area during 1989 and 1990 (서울 수도권 지역의 광화학오존에 관한 연구)

  • 정용승;정재섭
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.7 no.3
    • /
    • pp.169-179
    • /
    • 1991
  • Atmospheric $O_3$ in the biosphere is formed under the favourable meteorological condition, when the primary pollutants, such as $NO_2, HC, CO, CH_4$, etc., react with over constituents. Observed annual average concentrations for 1989 and 1990 were 11.8 and 10.4 ppb, respectively. THe number of days measured ozone over 80 ppb in Seoul were 36 in 1989 and 39 in 1990. In general, monthly maximum values occurred in May and August. In comparison with 1 $\sim$ 2 maxima of $O_3$ distribution in large cities in other countries, it was found that there were 3 $\sim$ 4 maxima in Seoul and its suburbs. Topographic effects, resulted by wind channelling in the Han River valley and by the blocking of air pollutants in the mountain, appeared to produce multiple centres of $O_3$ maxima in Seoul. Surface $O_3$ values were low with decreasing solar radiation, when the cloudiness increased and precipitation occurred. According to 12 cases examined, 2 cases shown here, $O_3$ values exceeding 80 ppb were occurred when the Korean peninsular was under the influence of the backside airflows with high intensity of solar radiation. Occasionally, sea breezes were observed to occur in warm seasons, and the chanelling effect of the Han River valley appeared to increase the general wind (speed) to the east side of Seoul. In this meso-scale situation $O_3$ in downwind is highly correlated with precursors. The sea breeze of 2 $\sim$ 4 m $s^{-1}$ will take 3 $\sim$ 5 hours to transport photochemical precursors for 20 $\sim$ 50 km. In turn the areas of maximum $O_3$ occurrence in Seoul are in the range of meso-scale transport of air pollutants.

  • PDF

Numerical Simulation of Volcanic Ash Dispersion and Deposition during 2011 Eruption of Mt. Kirishima (2011년 기리시마 화산 분화에 따른 화산재 이동 및 침적에 관한 수치모의실험)

  • Lee, Soon-Hwan;Jang, Eun-Suk;Yun, Sung-Hyo
    • Journal of the Korean earth science society
    • /
    • v.35 no.4
    • /
    • pp.237-248
    • /
    • 2014
  • To analyze the characteristics of deposition and dispersion of volcanic ash emitted from Mt. Kirishima on January 26, 2011, several numerical simulations were carried out by using the numerical models including Weather and Research Forecast (WRF) and FLEXPART. The dispersion of ash located under 1 km high tends to be concentrated along the prevailing wind direction on January 26 2011. On the other hand, volcanic ash released on the following day spreads to Kirishima bay due to the intensified high pressure air mass in southern Kyushu. When Siberian air mass was intensified January 26, 2011, the deposition of volcanic ash is concentrated restrictedly in the narrow area along the wind direction of the downwind side of Mt. Kirishima. The development of high pressure air mass over the eruption area tends to induce the intensified horizontal diffusion of volcanic ash. Since the estimated deposition of volcanic ash is agreed well with observed values, the proposed numerical simulation is reasonable to use the assessment on the behavior of volcanic ash.