DOI QR코드

DOI QR Code

Numerical Simulation of Volcanic Ash Dispersion and Deposition during 2011 Eruption of Mt. Kirishima

2011년 기리시마 화산 분화에 따른 화산재 이동 및 침적에 관한 수치모의실험

  • Lee, Soon-Hwan (Department of Earth Science Education, Pusan National University) ;
  • Jang, Eun-Suk (Engineering Division, Hanzhong University) ;
  • Yun, Sung-Hyo (Department of Earth Science Education, Pusan National University)
  • Received : 2014.06.12
  • Accepted : 2014.08.07
  • Published : 2014.08.31

Abstract

To analyze the characteristics of deposition and dispersion of volcanic ash emitted from Mt. Kirishima on January 26, 2011, several numerical simulations were carried out by using the numerical models including Weather and Research Forecast (WRF) and FLEXPART. The dispersion of ash located under 1 km high tends to be concentrated along the prevailing wind direction on January 26 2011. On the other hand, volcanic ash released on the following day spreads to Kirishima bay due to the intensified high pressure air mass in southern Kyushu. When Siberian air mass was intensified January 26, 2011, the deposition of volcanic ash is concentrated restrictedly in the narrow area along the wind direction of the downwind side of Mt. Kirishima. The development of high pressure air mass over the eruption area tends to induce the intensified horizontal diffusion of volcanic ash. Since the estimated deposition of volcanic ash is agreed well with observed values, the proposed numerical simulation is reasonable to use the assessment on the behavior of volcanic ash.

화산재의 확산 특성을 분석하고, 침적량의 예측 가능성을 평가하기 위하여, 2011년 1월26일 분화가 시작된 일본 기리시마 화산을 대상으로 WRF와 확산모형 FLEXPART를 이용한 수치모의실험을 실시하였다. 지상 1 km 이하 대기경계층내의 화산재 확산 특성은 26일 방출된 입자의 경우 주풍을 따라 집중되는 경향을 보이지만, 27일 방출된 화산재는 큐슈남부에 발달한 고기압의 영향으로 기리시마 만까지 확산된다. 겨울철의 강한 시베리아 기단이 발달한 26일의 경우, 기리시마 화산 풍하측에 위치한 미야기 현 중앙 산악 후면의 좁은 영역에서 집중적으로 침적이 이루어진다. 또한 분화 지역 주변의 국지적인 고기압의 발달은 화산재의 수평 확산을 증대시키는 역할을 한다. 침적량의 분포는 정량적인 측면에서 실제 화산 분출에 따른 영향과 매우 유사한 경향성을 보이고, 제시한 수치모의실험은 화산재의 이동 및 침적량 예측 및 산정에 적절하다고 판단된다.

Keywords

References

  1. Bonadonna, C. and Houghton B.F., 2005, Total grain-size distribution and volume of tephra-fall deposits. Bulletin of Volcanology, 67, 441-456. https://doi.org/10.1007/s00445-004-0386-2
  2. Costa, A., Dell'Erba, F., Di Vito, M.A., Isaia, R., Mcedonio, G., Orsi, G., and Pfeiffer, T., 2009, Tephra fallout hazard assessment at the Campi Flegrei caldera (Italy). Bulletin of Volcanology, 71, 259-273. https://doi.org/10.1007/s00445-008-0220-3
  3. Derimian, Y., Dubovik, O., Tanre, D., Goloub, P., Lapyonok, T., and Mortier, A., 2012, Optical properties and radiative forcing of the Eyjafjallajokull volcanic ash layer observed over Lille, France, in 2010. Journal of Geophysical Research, 117, D00U25, doi:10.1029/2011JD016.
  4. Folch, A., 2012, A review of tephra transport and dispersal models: Evolution, current status, and future perspectives. Journal of Volcanology and Geothermal Research, 235-236, 96-115. https://doi.org/10.1016/j.jvolgeores.2012.05.020
  5. Francis, P.N., Cooke, M.C., and Saunders, R.W., 2012, Retrieval of physical properties of volcanic ash using Meteosat: A case study from the 2010 Eyjafjallajokull eruption, Journal Of Geophysical Research, 117, D00U09, doi:10.1029/2011JD016788.
  6. Furukawa, R., 2011, Eruption of Shinmoe-dake Volcano, Kirishima volcano group, 2011. AIST TODAY, 11, 15. (in Japanese)
  7. Gasteiger, J., Gross, S., Freudenthaler, V., and Wiegner, M., 2011, Volcanic ash from Iceland over Munich: Mass concentration retrieved from ground-based remote sensing easurements. Atmospheric Chemistry and Physics, 11, 2209-2223, doi:10.5194/acp-11-2209-2011.
  8. International Association of Volcanology and Chemistry of the Earth's Interior, 2012, Scientific Assemble-Forecasting volcanic activity. IAVCEI News, 2, 7-8.
  9. Lee, K.H. and Jang, E.S., 2014, Sensitivity analysis of volcanic ash inherent optical properties to the remote sensed radiation. Korean Journal of Remote Sensing, 30, 47-59. (In Korean) https://doi.org/10.7780/kjrs.2014.30.1.5
  10. Lee, S.H. and Yun, S.H., 2011, Impact of meteorological wind fields average on predicting volcanic tephra dispersion of Mt. Baekdu. Journal of Korean Earth Science Society, 32, 360-372. (In Korean) https://doi.org/10.5467/JKESS.2011.32.4.360
  11. Lee, S.H., Jang E.S., and Lee, H.M., 2012, A case analysis of volcanic ash dispersion under various volcanic explosivity index of the Mt. Baekdu. Journal of Korean Earth Science Society, 33, 280-293. (In Korean) https://doi.org/10.5467/JKESS.2012.33.3.280
  12. Mackie, S., Millington, S.C., and Watson, I.M., 2014, How assumed composition affects the interpretation of satellite observations of volcanic ash. Meteorological Applications, 21, 20-29. https://doi.org/10.1002/met.1445
  13. Millet T.P. and Casadevall T.J., 2000, Volcanic ash hazards to aviation. In Sigurdsson, H. et al. (eds), Encyclopedia of volcanoes. Academic Press, San Diego, USA, 915-930.
  14. Millington S.C., Saunders R.W., Francis P.N., and Webster H.N., 2012, Simulated volcanic ash imagery: A method to compare NAME ash concentration forecasts with SEVIRI imagery for the Eyjafjalljkull eruption in 2010. Journal of Geophysical Research, 117, D00U17, doi:10.1029/2011JD016770.
  15. Mishchenko, M.I., Geogdzhayev, I.V., Rossow, W.B., Cairns, B.E., Carlson, B., Lacis, A.A., Liu, L., and Travis, L.D., 2007, Long-term satellite record reveals likely recent aerosol trend. Science, 315, doi:10.1126/science.1136709.
  16. Newman, S.M., Clarisse, L., Hurtmans, D., Marenco, F., Johnson, B., Turnbull, K., Havemann, S., Baran, A.J., O'Sullivan, D., and Haywood, J., 2012, A case study of observations of volcanic ash from the Eyjafjalljokull eruption: 2. Airborne and satellite radiative measurements. Journal of Geophysical Research, 117, D00U13, doi:10.1029/2011JD016780.
  17. Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G., 2005, Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmospheric Chemistry and Physics, 5, 2461-2474. https://doi.org/10.5194/acp-5-2461-2005
  18. Sulpizio, R., Folch, A., Costa, A., Scaini, C., and Dellino, P., 2012, Hazard assessment of far-range volcanic ash dispersal from a violent Strombolian eruption at Somma-Vesuvius volcano, Naples, Italy: Implications on civil aviation. Bulletin of Volcanology, 74, 2205-2218. https://doi.org/10.1007/s00445-012-0656-3
  19. Ueda, H., Kozono, T., Fujita, E., Kohno, Y., Nagai, M., Miyage, Y., and Tanada, T., 2013, Crustal deformation associated with the 2011 Shinmoe-dake eruption as observed by tiltmeters and GPS. Earth Planets Space, 65, 517-525. https://doi.org/10.5047/eps.2013.03.001
  20. Xu, J., Liu G., Wu, J., Ming, Y., Wang, Q., Cui, D., Shangguan, Z., Pan, B., Lin, X., and Liu, J., 2012, Recent unrest of Changbaishan volcano, northeast China: A precursor of a future eruption? Geophysical Research Letters, 39, L16305, doi:10.1029/2012GL052600.
  21. Yu, S.Y., Yoon, S.M., Jiang Z.H., and Choi, M.R., 2013, Building damage functions using limited available data for volcanic ash loss estimation, Journal of Korean Earth Science Society, 34, 524-535. https://doi.org/10.5467/JKESS.2013.34.6.524
  22. Yun, S.H. and Lee, J.H., 2012, Analysis of unrest signs of activity at the Baegdusan volcano. Journal of Petrological Society of Korea, 21, 1-12. (In Korean) https://doi.org/10.7854/JPSK.2012.21.1.001

Cited by

  1. Selecting Hazardous Volcanoes that May Cause a Widespread Volcanic Ash Disaster to the Korean Peninsula vol.37, pp.6, 2016, https://doi.org/10.5467/JKESS.2016.37.6.346