• Title/Summary/Keyword: dowel bearing strength

Search Result 17, Processing Time 0.033 seconds

Evaluation of Dowel Bearing Strength of Structural Composite Lumber(SCL) on the Effect of Moisture Content

  • Oh, Sei Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.61-69
    • /
    • 2003
  • This study investigated the effect of moisture content and loading direction on dowel bearing strength of two types of SCL. Dowel bearing tests of LVL and PSL were conducted with two different MC level, 7.5% and 19%, and two different oriention, L-direction(loading parallel to grain) and X-direction(loading perpendicular to grain). Most of specimens showed typical load-deformation curves and intersected 5% offset line. Failure modes were classified into two categories; spliting(for L-direction specimens) and peeling(for X-direction specimens). Dowel bearing strength generally decreased with increasing MC. The decreasing rate was more significant in X-directon. ESG also decreased with increasing MC, and the ratio of ESG of 7.5% versus 19% was about 1.47. Dowel bearing strength of LVL and PSL in L-direction was higher than that of X-direction. This results indicated that MC and loading orientation had a significant effect on dowel bearing strength of SCL. The average dowel bearing strength of LVL were higher than that of PSL in each loading direction. Two types of probability distribution model were chosen to quantify strength distribution, normal and 2-parameter weibull distribution. The two models showed good agreement with the data, especially in lower tail of the cumulative distribution. Normal and 2-parameter weibull distribution seemed to proper model of the dowel bearing strength for each MC levels.

Experimental Study of Bending and Bearing Strength of Parallel Strand Lumber (PSL) from Japanese Larch Veneer Strand

  • OH, Seichang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.237-245
    • /
    • 2022
  • This study examined the structural performance of experimental parallel strand lumber (PSL) from a Larch veneer strand. The prototype of PSL from a Larch veneer strand was manufactured in the experimental laboratory and tested. The bending and dowel bearing strength were determined from the modulus of elasticity (MOE), modulus of rupture (MOR), and dowel bearing strength based on a 5% offset yield load. The test results indicated that the average MOR of PSL was higher than that of 2 × 4 dimension lumber, and the average MOE of PSL was lower than that of 2 × 4 dimension lumber. A linear relationship was observed between the MOR and MOE. The allowable bending stress of PSL was derived as specified in ASTM D2915 and compared with other research. The dowel bearing strength of PSL in parallel to the grain was approximately double that perpendicular to the grain of PSL. A comparison of several theoretical calculations based on each national code for the dowel bearing strength was conducted, and some theoretical equations produced results closer to the experimental results when it was parallel to the grain, but the difference was higher in the case perpendicular to the grain. The test results showed that PSL made with Japanese larch veneer strands appeared to be suitable for a raw material of structural composite lumber (SCL) appeared to be used as a raw material for SCL.

Evaluation of Strength Properties for Bolted Connections with Lumber from Small Diameter Logs

  • Park, Joo-Saeng;Park, Chun-Young;Chun, Su-Kyoung;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.59-65
    • /
    • 2002
  • EYM (European Yield Model), which was adopted in NDS (National Design Specification for wood construction), has been used in Korea without any verification of the analysis of bolted wood connections. In the case of applying lumber from domestic small diameter logs, however, there are some problems with the direct application of EYM ; 1) relatively low dowel bearing strength and dimensional stability due to a large amount of immature wood, 2) effect of MC (moisture contents) on the dowel bearing strength of wood and the yield load of a bolted connection. To evaluate the strength properties of bolted connections with lumber from domestic small diameter logs, effect of MC on the dowel bearing strength of wood was investigated and double shear bolted connection tests were performed. As the MC of wood increased, the dowel bearing strength was linearly reduced, even under 19% MC, which showed that adjustment, not considered in NDS, was required. Double shear bolted connection tests indicated that effect of MC on yield load should be considered in order to determine design value.

A Experimental Study on the Bearing Strength and Stiffness of Concrete Under Dowel Bars (장부 철근하부의 지압강도 및 지압강성에 관한 연구)

  • 김규선;최기봉;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.3
    • /
    • pp.215-220
    • /
    • 1994
  • Results of an experimental investigation on the bearing strength and stiffness of concrete under dowel bars are summarized. The effects of concrete strength bar diameter, and location of the bar on concrete were studied. Based on test results, empirical equations are proposed to predict the, concrete bearing strength and stiffness under reinforcing bars. Cornparisions of analytical arid experimental results are presented.

Laboratory Performance Evaluation of Alternative Dowel Bar for Jointed Concrete Pavements (콘크리트 포장용 고내구성 대체 다웰바의 실내공용성 평가)

  • Park, Seong Tae;Park, Jun Young;Lee, Jae Hoon;Kim, Hyung Bae
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.23-36
    • /
    • 2013
  • PURPOSES: The problem under this circumstance is that the erosion not only drops strength of the steel dowel bar but also comes with volume expansion of the steel dowel bar which can reduce load transferring efficiency of the steel dowel bar. To avoid this erosion problem, alternative dowers bars are developed. METHODS: In this study, the bearing stresses between the FRP tube dowel bar and concrete slab are calculated and compared with its allowable bearing stress to check its structural stability in the concrete pavement. These comparisons are conducted with several cross-sections of FRP tube dowel bars. Comprehensive laboratory tests including the shear load-deflection test on a full-scale specimen and the full-scale accelerated joint concrete pavement test are conducted and the results were compared with those from the steel dowel bar. RESULTS: In all cross-sections of FRP tube dowel bars, computed bearing stresses between the FRP tube dowel bar and concrete slab are less than their allowable stress levels. The pultrusion FRP-tube dowel bar show better performance on direct shear tests on full-scale specimen and static compression tests at full-scale concrete pavement joints than prepreg and filament-winding FRP-tube dowel bar. CONCLUSIONS: The FRP tube dowel bars as alternative dowel bar are invulnerable to erosion that may be caused by moisture from masonry joint or bottom of the pavement system. Also, the pultrusion FRP-tube dowel bar performed very well on the laboratory evaluation.

Structural Analysis of Concrete-filled FRP Tube Dowel Bar for Jointed Concrete Pavements (콘크리트 포장에서 FRP 튜브 다웰바의 역학적 특성 분석)

  • Park, Jun-Young;Lee, Jae-Hoon;Sohn, Dueck-Su
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.21-30
    • /
    • 2011
  • As well known, dowel bars are used to transfer traffic load acting on one edge to another edge of concrete slab in concrete pavement system. The dowel bars widely used in South Korea are round shape steel bar and they shows satisfactory performance under bending stress which is developed by repetitive traffic loading and environment loading. However, they are not invulnerable to erosion that may be caused by moisture from masonry joint or bottom of the pavement system. Especially, the erosion could rapidly progress with saline to prevent frost of snow in winter time. The problem under this circumstance is that the erosion not only drops strength of the steel dower bar but also comes with volume expansion of the steel dowel bar which can reduce load transferring efficiency of the steel dowel bar. To avoid this erosion problem in reasonable expenses, dowers bars with various materials are being developed. Fiber reinforced plastic(FRP) dower that is presented in this paper is suggested as an alternative of the steel dowel bar and it shows competitive resistance against erosion and tensile stress. The FRP dowel bar is developed in tube shape and is filled with high strength no shrinkage. Several slab thickness designs with the FRP dowel bars are performed by evaluating bearing stress between the dowel bar and concrete slab. To calculated the bearing stresses, theoretical formulation and finite element method(FEM) are utilized with material properties measured from laboratory tests. The results show that both FRP tube dowel bars with diameters of 32mm and 40mm satisfy bearing stress requirement for dowel bars. Also, with consideration that lean concrete is typical material to support concrete slab in South Korea, which means low load transfer efficiency and, therefore, low bearing stress, the FRP tube dowel bar can be used as a replacement of round shape steel bar.

Shear resistance behaviors of a newly puzzle shape of crestbond rib shear connector: An experimental study

  • Chu, Thi Hai Vinh;Bui, Duc Vinh;Le, Van Phuoc Nhan;Kim, In-Tae;Ahn, Jin-Hee;Dao, Duy Kien
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1157-1182
    • /
    • 2016
  • A newly puzzle shape of crestbond rib shear connector is a type of ductile perfobond rib shear connector. This shear connector has some advantages, including relatively easy rebar installation and cutting, as well as the higher shear resistance strength. Thus, this study proposed a newly puzzle shape of crestbond rib with a "${\mho}$" shape, and its shear resistance behaviors and shear strengths were examined using push-out tests. Five main parameters were considered in the push-out specimens to evaluate the effects of shear resistance parameters such as the dimensions of the crestbond rib, transverse rebars in the crestbond dowel, concrete strength, rebar strength, and dowel action on the shear strength. The shear loading test results were used to compare the changes in the shear behaviors, failure modes, and shear strengths. It was found that the concrete strength and number of transverse rebars in the crestbond rib were significantly related to its shear resistance. After the initial bearing resistance behavior of the concrete dowel, a relative slip occurred in all the specimens. However, its rigid behavior to shear loading decreased the ductility of the shear connection. The cross-sectional area of the crestbond rib was also shown to have a minor effect on the shear resistance of the crestbond rib shear connector. The failure mechanism of the crestbond rib shear connector was complex, and included compression, shear, and tension. As a failure mode, a crack was initiated in the middle of the concrete slab in a vertical direction, and propagated with increasing shear load. Then, horizontal cracks occurred and propagated to the front and rear faces of the specimens. Based on the results of this study, a design shear strength equation was proposed and compared with previously suggested equations.

Fracture Behavior of Dowel Joint of Concrete Slab Track (콘크리트궤도 슬래브의 다웰 연결부 파괴 거동)

  • Kwon, Kusung;Jang, Seung Yup;Chung, Wonseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.2125-2133
    • /
    • 2013
  • Recently, an interest on joint behavior between adjacent concrete slab tracks has increasing due to large application of such track system. Dowel bars are widely used to improve load transfer capacity across the joints. Dowel bars reduce the deflections and stresses by transferring the load between the slabs. This study proposes the lumped shear spring model to efficiently model dowel joints of adjacent slabs. This model includes bearing stiffness between dowel bar and concrete as well as dowel gap. Strength of the proposed spring model is evaluated based on Concrete Capacity Design method under the assumption of shear failure mode in the joints. Experiments are also performed up to failure to evaluate the accuracy of the proposed model. It has been observed that the proposed model is able to predict initial nonlinearity due to dowel gap, and capture material nonlinearity of the test slabs. Thus, it is recommended that the proposed model can be effectively applied to the dowel joints of concrete slab track.

Estimation of Moment Resisting Property for Pin Connection Using Shear Strength of Small Glulam Specimens (집성재 소시험편의 전단강도에 의한 핀접합부의 모멘트 저항성능 예측)

  • Hwang, Kweonhwan;Park, Joosaeng
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.58-65
    • /
    • 2008
  • Most connections for the glulam structural members consisted of connector and fastener. The mechanical behaviour of the connection can be occurred by the dowel bearing resistance and wood shear by the fastener. This study aims at the examination of the shear properties for the small specimen with lamination components and for the full-sized pin connection and the moment resisting property for the double shear full-sized pin connection using structural column and beam members. Small specimens including glue line shows greater density and shear strength by the lamination effect than other specimens. It is needed that estimations of double shear property and moment resistance for the pin connections should be adjusted in some degree. For the better and safe estimation of moment resistance strength for the column-beam pin connection, however, the shear strength of small specimens should be deducted by 10%.

Load Bearing Capacity of CLT - Concrete Connections with Inclined Screws (경사못이 적용된 CLT-콘크리트 접합부의 하중전달능력)

  • Kim, Kyung-Tae;Kim, Jong-Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.4
    • /
    • pp.3-13
    • /
    • 2018
  • Load bearing capacity of dowel type fasteners loaded perpendicular to the shear plane is determined based on Johansen's yield theory (Johansen, 1949). In case of inclined screws whose axis is no longer perpendicular, the ultimate load of connection increases because of additional axial withdrawal capacity. To calculate load bearing capacity for inclined screws, KBC2016 and Eurocode5 provide design equations using the combination of two effects; axial and bending strength. Although their equations have been validated for a long time, there is still minimal information how to apply them for concrete-CLT joints. Since there are not many test data available, engineers have to make certain assumptions and thus results may look inconsistent in practice. In this paper, authors would like to describe the current approach and assumptions indicated by KBC2016 and Eurocode 5 and how they match the experimental results in terms of shear strength of CLT-concrete connections. To fulfill the objective, several push-out tests were performed on nine different test specimens. Each specimen has different penetration angles and depths. By analyzing load-displacement curves, the maximum shear strength, stiffness, and ductility were obtained. Shear strength values were compared with the current design codes and theoretical equations proposed in this paper. Observations on stiffness and ductility were briefly discussed.