• Title/Summary/Keyword: dowel action

Search Result 43, Processing Time 0.023 seconds

Modelling dowel action of discrete reinforcing bars for finite element analysis of concrete structures

  • Kwan, A.K.H.;Ng, P.L.
    • Computers and Concrete
    • /
    • v.12 no.1
    • /
    • pp.19-36
    • /
    • 2013
  • In the finite element analysis of reinforced concrete structures, discrete representation of the steel reinforcing bars is considered advantageous over smeared representation because of the more realistic modelling of their bond-slip behaviour. However, there is up to now limited research on how to simulate the dowel action of discrete reinforcing bars, which is an important component of shear transfer in cracked concrete structures. Herein, a numerical model for the dowel action of discrete reinforcing bars is developed. It features derivation of the dowel stiffness based on the beam-on-elastic-foundation theory and direct assemblage of the dowel stiffness matrix into the stiffness matrices of adjoining concrete elements. The dowel action model is incorporated in a nonlinear finite element program based on secant stiffness formulation and application to deep beams tested by others demonstrates that the incorporation of dowel action can improve the accuracy of the finite element analysis.

An Experimental Study on the Shear Resistance of Dowel Bars (장부철근의 전단저항에 대한 실험적 연구)

  • 신장호
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.6
    • /
    • pp.216-223
    • /
    • 1995
  • This research is aimed to investigate the influence of the structural parameters on dowel action of reinforcing bars in reinforced concrete members. I~ollowing the previous research, $^{(3.6)}$ a total of forty two specimens were tested to scrutinize the dowel action of reinforcing bars. Concrete cover, reinforcing bar size and bar distance were taken as main test variables for constant compressive strength of concrete. ]+om the test results, the structural behavior of all specimens was almost linear up to failure load. It is seen that dowel force increases as concrete cover increases. Reinforcing bar size and bar distance hardly affects dowel force. It is found that the dowel forces obtained by this experimental research is relatively close to that of regression analysis results and White's equation.

A Study on Dowel-Bar Behavior of Jointed Concrete Pavement Using 3-D FEM Analysis (3차원 유한요소해석을 이용한 줄눈콘크리트 포장의 다웰바 거동에 대한 연구)

  • Hong, Seong-Jae;Yune, Chan-Young;Lee, Seung-Woo;Kim, Yeon-Bok
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.79-85
    • /
    • 2009
  • Dowel-bar in the jointed concrete pavement has been designed and constructed by Foreign standard and experience in Korea. Timoshenko solution was evaluated for dowel bar design. However, various assumptions, Timoshenko solution evaluated only single dowel bar. Therefore, This study object is evaluated the guide line dowel size and arrangement that using the 3Dimensional Finite Element Method. Dowel bar behavior, Timoshenko solution and 3D FEM estimated used result. Dowel allowable stress and Friberg bearing stress estimated using result. The effects of Dowel Group Action were analyzed using Timoshenko range and Friberg range and 3D FEM.

  • PDF

An Experimental Study on the Dowel Action in Reinforced Concrete Members(II) (철근 콘크리트 부재의 장부작용에 관한 실험적 연구 (II))

  • 김성훈;신장호;김상식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.59-64
    • /
    • 1994
  • Following the previous research(7), a total of forty six specimens were tested to scrutinize the dowel action of reinforcing bars. Concrete cover, width of specimen and reinforcing bar size were taken as main test variables for constant compressive strength of concrete, based on the observation of the test results, the characteristic effects of the test variables on the dowel strength have been analyzed.

  • PDF

Influence of Structural Parameters on the Dowel Action of Reinforcing Bar in Reinforced High Strength concrete Members (고강도 철근콘크리트 부재에서 철근의 장부작용에 대한 구조변수의 영향)

  • 최도수;신장호;김상식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.350-355
    • /
    • 1994
  • This study is aimed at the experimental investigation of the influence of the structural parameters such as concrete cover, width of specimen and bar size on the dowel action of reinforcing bari in high strength concrete members. Based on the proper combination of these parameter, a total of 46 specimens has been cast for fc'= 500 ㎏/㎠ and another 46 specimens for fc'= 700 ㎏/㎠, and cured at the laboratory. Comparative analyses have been made for the parametric contribution to the dowel strength from the test results, and a regress equation has been suggested.

  • PDF

An Experimental Study on the Dowel Action in Reinforcement Concrete Members (철근콘크리트 부재의 장부작용에 관한 실험적 연구)

  • 박송철;신장호;김상식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.250-255
    • /
    • 1993
  • This research is aimed at the experimental investigation of the characteristic contribution of the structural parameters, such as concrete over, concrete strength and reinforcing bar size on the dowel strength of the reinforced concrete stuctures. A total of twenty four specimens were tested for eight experimental conditions. The test results showed relatively close agreements with the values calculated by Vintzeleou-tassios equation. From the observations of the test results, it was found that the concrete cover affected almost linearly on the dowel strength , while the var size and the concrete strength showed coupled effects.

  • PDF

Study on Dowel-Bar Optimum Position of Jointed Concrete Pavement Using 3-D FEM Analysis (3차원 유한요소해석을 이용한 줄눈콘크리트 포장의 다웰바 최적배치에 대한 연구)

  • Chon, Beom Jun;Hong, Seong Jae;Lee, Seung Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2D
    • /
    • pp.135-141
    • /
    • 2010
  • Dowel bar in the jointed concrete pavement has been designed and constructed by Foreign standard and experience in Korea. The behavior of dowel bar is explored based in analyze of 3-Dimension Finite Element Method. To evaluate behavior of dowel bar compared Timoshenko theory and 3-Dimensional Finite Element Method. Based on the 3-Dimension Finite Element Method analyze the dowel-bar optimum position that can reduce deflections of slabs by considering wheel path distributions was suggest in this study.

Structural Behavior of Cement Concrete Pavement at Transverse Joint Using Model Test

  • Ko, Young-Zoo;Kim, Kyung-Soo;Bae, Ju-Seong
    • KCI Concrete Journal
    • /
    • v.12 no.2
    • /
    • pp.23-30
    • /
    • 2000
  • This paper presents behavior of concrete pavement at transverse joint subject to static test load. The test was conducted on 1/10 scale model in the laboratory. Load transfer across the crack is developed either by the interlocking action of the aggregate particles at the faces of the joint or by a combination of aggregate interlock and mechanical devices such as dowel bars. In this study, significant three variables considered to the performance of joints were selected. : (a)diameter of dowel bars(2.5mm, 3.0mm, 4.0mm), (b)presence or absence of dowel bars, (c)aggregate types(crushed stone, round stone). Experimental results were analyzed to find relationships among displacement of discontinuous plane at jointed slab, load transfer efficiency and joint opening, etc. Displacement of discontinuous plane at joint was decreased according to the increase of dowel bar diameter. In addition, it is found that model slabs made using crushed stone had better load transfer characteristics by aggregate interlock than model slabs made using similarly graded round stone. Displacement of discontinuous plane was increased according to the increase of loading. In addition, it was decreased as dowel diameter(2.5mm, 3.0mm, 4.0mm) was increased. In the case of slab without dowel bars, displacement of discontinuous plane was greatly increased and load transfer effciency of slab applied crushed stone was shown 30 percent greater than round stone. In addition, load transfer efficiency of slabs, which were made using crushed and round stone without dowel bars, was decreased to 20 percent and 30 percent, respectively as it was compared with slabs made us-ing dowel bars.

  • PDF

Structure Behavior Evaluation of Beams composited with Steel and Reinforced Concrete (철근콘크리트와 강을 합성한 복합 단면보의 구조거동평가)

  • Kim, In Seok;Kim, Hak Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.665-673
    • /
    • 2008
  • The composite structures of steel and reinforced concrete, which have been widely used in large-scale concrete structures, werestudied to investigate the cause of unexpected cracks and to verify the composite actions between the two materials. Vertical stiffeners between flanges, studs and dowel bars, stirrups, and concrete strength were chosen as experimental variables in afour-point loading test. The results showed that the vertical stiffener prevented not only the local web buckling, but also bond failures between steel and concrete. It increased the flexural resistance (fracture loads) due to the composite action of two materials, compared withthose of any experimental variable. However, the composite behavior of steel reinforced concrete beam was not affected seriously by additional studs, dowel bars, stirrups, and concrete strength.

Winkler spring behavior in FE analyses of dowel action in statically loaded RC cracks

  • Figueira, Diogo;Sousa, Carlos;Neves, Afonso Serra
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.593-605
    • /
    • 2018
  • A nonlinear finite element modeling approach is developed to assess the behavior of a dowel bar embedded on a single concrete block substrate, subjected to monotonic loading. In this approach, a discrete representation of the steel reinforcing bar is considered, using beam finite elements with nonlinear material behavior. The bar is connected to the concrete embedment through nonlinear Winkler spring elements. This modeling approach can only be used if a new constitutive model is developed for the spring elements, to simulate the deformability and strength of the concrete substrate. To define this constitutive model, an extensive literature review was conducted, as well as 3 experimental tests, in order to select the experimental data which can be used in the calibration of the model. Based on this data, an empirical model was established to predict the global dowel response, for a wide range of bar diameters and concrete strengths. This empirical model provided the information needed for calibration of the nonlinear Winkler spring model, valid for dowel displacements up to 4 mm. This new constitutive model is composed by 5 stages, in order to reproduce the concrete substrate response.