• Title/Summary/Keyword: double-stranded DNA

Search Result 150, Processing Time 0.021 seconds

ATP Hydrolysis Analysis of Severe Acute Respiratory Syndrome (SARS) Coronavirus Helicase

  • Lee, Na-Ra;Lee, A-Ram;Lee, Bok-Hui;Kim, Dong-Eun;Jeong, Yong-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1724-1728
    • /
    • 2009
  • Severe acute respiratory syndrome coronavirus (SARS-CoV) helicase separates the double-stranded nucleic acids using the energy from ATP hydrolysis. We have measured ATPase activity of SARS-CoV helicase in the presence of various types of nucleic acids. Steady state ATPase analysis showed that poly(U) has two-times higher turnover number than poly(C) with lower Michaelis constant. When M13 single-stranded DNA is used as substrate, the Michaelis constant was about twenty-times lower than poly(U), whereas turnover numbers were similar. However, stimulation of ATPase activity was not observed in the presence of double-stranded DNA. pH dependent profiles of ATP hydrolysis with the helicase showed that the optimal ATPase activities were in a range of pH 6.2 ~ 6.6. In addition, ATP hydrolysis activity assays performed in the presence of various divalent cations exhibited that $Mg^{2+}$ stimulated the ATPase activity with the highest rate and $Mn^{2+}$ with about 40% rate as compared to the $Mg^{2+}$.

Gene functional analysis of Harmonia axyridis by in vitro transcription

  • Park, Sang-Eun;Youn, Young-Nam
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.3
    • /
    • pp.471-488
    • /
    • 2019
  • Random genes were screened in two transforming ways to investigate the new genes of a ladybug using the Harmonia axyridis cDNA library stock cell cloned in the LITMUS 28i vector in a previous study. Phenotypic variation was observed after injection of the synthesized double-stranded RNA through the in vitro transcription process. The cDNA library of H. axyridis was transformed into E. coli $DH5{\alpha}$ and 10B competent cells by heat shock. Analysis of the nucleotide sequences of the 42 clones with the insert DNAs revealed that 21 clones were homologous with the genes of insects, and only one clone had a gene from H. axyridis. Thirteen of the 21 insect genes were homologous with genes from coleopteran insects. Fourteen genes were selected, which were identified by the gene screening results, and were synthesized as double-stranded RNA through in vitro transcription. One microgram of the synthesized double-stranded RNA between segments T1 and T2 were injected using a syringe into each anesthetized fourth larvae which were under 2 days old. As a result, a phenotypic variation appeared in the larva injected with the two genes. While the eggs of H. axyridis injected with distilled water hatched out three days after oviposition, the eggs of H. axyridis injected with dsHma 06 did not hatch but become shrivel a week after oviposition. Most of the H. axyridis injected with dsHma 08 died and were unable to complete the pupation or eclosion during ecdysis.

Application of Engineered Zinc Finger Proteins Immobilized on Paramagnetic Beads for Multiplexed Detection of Pathogenic DNA

  • Shim, Jiyoung;Williams, Langley;Kim, Dohyun;Ko, Kisung;Kim, Moon-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.9
    • /
    • pp.1323-1329
    • /
    • 2021
  • Micro-scale magnetic beads are widely used for isolation of proteins, DNA, and cells, leading to the development of in vitro diagnostics. Efficient isolation of target biomolecules is one of the keys to developing a simple and rapid point-of-care diagnostic. A zinc finger protein (ZFP) is a double-stranded (ds) DNA-binding domain, providing a useful scaffold for direct reading of the sequence information. Here, we utilized two engineered ZFPs (Stx2-268 and SEB-435) to detect the Shiga toxin (stx2) gene and the staphylococcal enterotoxin B (seb) gene present in foodborne pathogens, Escherichia coli O157 and Staphylococcus aureus, respectively. Engineered ZFPs are immobilized on a paramagnetic bead as a detection platform to efficiently isolate the target dsDNA-ZFP bound complex. The small paramagnetic beads provide a high surface area to volume ratio, allowing more ZFPs to be immobilized on the beads, which leads to increased target DNA detection. The fluorescence signal was measured upon ZFP binding to fluorophore-labeled target dsDNA. In this study, our system provided a detection limit of ≤ 60 fmol and demonstrated high specificity with multiplexing capability, suggesting a potential for development into a simple and reliable diagnostic for detecting multiple pathogens without target amplification.

Condensation of DNA by a Histone-like Protein in Escherichia coli

  • Kim, So-Youn;Hwang, Deog-Su
    • BMB Reports
    • /
    • v.28 no.2
    • /
    • pp.143-148
    • /
    • 1995
  • In E. coli, chromosomal DNA associated with proteins is condensed into an organized structure known as nucleoid. Using a nitrocellulose filter binding assay to identify proteins forming nucleoid, a 21 kDa protein was purified from E. coli. The molecular weight of the purified protein was 21 kDa on SDS-polyactylamide gel electrophoresis and 24 kDa on gel permeation chromatography. A molecular weight of 21 kDa on SDS-polyacrylamide gel electrophoresis is unique among known proteins which are believed to be involved in the formation of nucleoid in E. coli. The 21 kDa protein nonspecifically binds to both double-stranded and single-stranded DNA. Sedimentation in a sucrose gradient revealed that the protein induced significant condensation of both supercoiled plasmid DNA and linear bacteriophage $\lambda$ DNA On the basis of quantitative Western-blot analysis, approximately 40,000 molecules of the protein were estimated to exist in an E. coli. The biochemical properties and cellular abundance of the 21 kDa protein suggest that this protein participates in the formation of nucleoid in E. coli.

  • PDF

Comparative Study of Nucletic Acid Binding of the Purified RBF Protein and Its Inhibition of PKR phosphorylation (RBF정제단백질의 핵산결합도 및 PKR효소의 인산화억제효과의 비교에 관한 연구)

  • 박희성;김인수
    • Journal of Life Science
    • /
    • v.8 no.2
    • /
    • pp.119-125
    • /
    • 1998
  • Column-purified double-stranded RNA binding factor (RBF) protein was tested for its binding affinity for the different forms of nucleic acids structure such as single-stranded(ss) and double-stranded(ds)RNA and ss- and dsDNA. The RBF protein was incubated with each of these nucleic acid structures in separate reactions and its comparative binding affnity was visualized by SDS-polyacrylamide gel electrophoresis. The RBF protein bound to the dsRNA molecule to form a tight RNA:protein complex in agreement with previous studies, but not to the other nucleic acid molecules confirming its distinctive affinity for the dsRNA structure. In phosphorylation assay in vito, the purified RBF protein significantly inhibited the autophosphorylation of the PKR derived from not only human but mouse source in the presence of poly(I):poly(C). It is suggesting that PKR vs. RBF is similarly under a competitive interaction among different eukaryotic organisms during protein synthesis.

  • PDF

Molecular Cloning and Expression in Escherichia coli of a Rabbit Globin Gene (유전공학적 방법에 의한 토끼 글로빈 유전자의 재조합과 대장균에서의 발현)

  • Jang, Sung-Key;Park, Hyune-Mo
    • The Korean Journal of Zoology
    • /
    • v.27 no.2
    • /
    • pp.103-116
    • /
    • 1984
  • The structural gene of rabbit hemoglobin was cloned into Pst I site of pBR322 in E. coli. The complementary DNA (cDNA) was synthesized from rabbit globin mRNA with avian myeloblastosis viral reverse transcriptase, and then RNA was destroyed at pH 11. The double stranded cDNA was synthesized with both Klenow fragment of E. coli DNA polymerase I and reverse transcriptase and then the hairpin loop was opened with Sl nuclease. Double stranded cDNA was subsequently tailed with dCTP and annealed to dGMP-tailed vector DNA. After transformation and initial screening of appropriate clones by plasmid size, the cloned colonies were identified by in situ colony hybridization using by plasmid size, the cloned colonies were identified by in situ colony hybridization using $[^32P]$-labeled cDNA probes and characterized the inserts with restriction endonucleases. The expression of cloned globin gene was investigated by standard radioimmunoassay using rat anti-rabbit Hb serum as primary antibody and goat antirat IgG serum as secondary antibody. The result suggested that the chimeric proteins (the part of $\\beta$-lactamase from the vector pBR322 and globin from rabbit) were supposedly produced in E. coli and the product had the antigenic determinant of rabbit hemoglobin.

  • PDF

Detection of AluI Endonuclease Activity by Using Double Stranded DNA-Templated Copper Nanoclusters

  • Yang, Ji Su;Gang, Jongback
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.316-319
    • /
    • 2021
  • Restriction endonucleases play an important role in molecular cloning, clinical diagnosis, and pharmacological drug studies. In this study, DNA-templated copper nanoclusters (DNA-CuNCs) were used to detect AluI endonuclease activity due to their high fluorescence emission and rapid synthesis of DNA-CuNCs under ambient conditions. Results showed that AluI activity was detected in a highly sensitive manner at low concentrations of AluI endonuclease by the fluorescence intensity of DNA-CuNCs. Additionally, its inhibition was monitored in the presence of daidzein under optimal conditions.

Effective Family Shuffling Method Using Complementary DNA Fragments Produced by S1 Nuclease

  • Hong, Soon-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.2004-2007
    • /
    • 2006
  • An efficient method for the in vitro reassembly of homologous DNA sequences is presented. The proposed method involves obtaining single strands of homologous genes and hybridizing them to obtain partially hybridized heteroduplex DNA; cleaving the single-stranded regions of the heteroduplex DNA using S1 nuclease to generate double-strand DNA fragments; denaturing the double-strand DNA fragments to generate single-strand DNA fragments; conducting a series of polymerase chain reactions (PCR) using the single-strand DNA fragments as internal primers and a mixture of homologous DNA as templates to obtain elongated reassembled DNA; and finally, amplifying the reassembled DNA by a PCR using terminal primers. As a result, DNA reassembly could be achieved between homologous genes with a sequence similarity as low as 78%.

Regulation of Gene Expression and 3-Dimensional Structure of DNA (유전자 발현 조절과 DNA 3차원적 구조와의 관계)

  • 김병동
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.149-155
    • /
    • 1987
  • Growth and development of a higher plant, or any living organism for that matter, could be defined as an orderly expression of the genome in time and space in close interaction with the environment. During differentiation and development of a tissue or organ a group of genes must be selectively turned on or turned off mainly by trans-acting regulators. In this general concept of regulation of regulation of gene expression, a DNA molecule is recognized at a specific nucleotide sequence by DNA-binding factors. Molecular biology of the regulatory factors such as hormones, and their receptors, target DNA sequences and DNA-binding proteins are well advanced. What is not clearly understood is the molecular basis of the interactions between DNA and binding factors, expecially of the usages of the dyad symmetry of the target DNA sequences and the dimeric nature of the DNA-binding proteins. A unique 3-dimensional structure of DNA has been proposed that may play an important role in the orderly expression of the gene. A foldback intercoil (FBI) DNA configuration which was originally found by electron microscopy among mtDNA molecules from pearl millet has some unique features. The FBI configuration of DNA is believed to be formed when a flexible double helix folds back and interwines in the widened major grooves resulting in a four stranded, intercoil DNA whose thickness is the same as that of double stranded DNA. More recently, the FBI structure of DNA has been also induced in vitro by a novel enzyme which was purified from pearl millet mitochondria. It has been proposed that the FBI DNA could be utillized in intramolecular recombination which leads to inversion or deletion, and in intermolecular recombination which can lead to either site-specific recombination, genetic recombination via single strand invasion, or cross strand recombination. The structure and function of DNA in 3-dimensional aspect is emphasized for better understanding orderly expression of genes during growth and development.

  • PDF

Protective Effects of Nypa fruticans Wurmb against Oxidative DNA Damage and UVB-induced DNA Damage

  • So-Yeon Han;Tae-Won Jang;Da-Yoon Lee;Seo-Yoon Park;Woo-Jin Oh;Se Chul Hong;Jae-Ho Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.54-54
    • /
    • 2023
  • Nypa fruticans Wurmb (N. fruticans) is a plant that belongs to Araceae and N. fruticans is mainly found in tropical mangrove systems. The parts (leaves, stems, and roots) of N. fruticans are traditionally used for asthma, sore throat, and liver disease. N. fruticans contains flavonoids and polyphenols, which are substances that have inhibitory effects on cancer and oxidant. In previous studies, some pharmaceutical effects of N. fruticans on melanogenesis and inflammation have been reported. The present study is conducted to investigate the effect of the ethyl acetate fraction of N. fruticans (ENF) on oxidative DNA damage and UVB-induced DNA damage. DNA damage response (DDR) pathway is important in research on cancer, apoptosis, and so on. DDR pathways are considered a crucial factor affecting the alleviation of cellular damage. ENF could reduce oxidative DNA damage derived from reactive oxygen species by the Fenton reaction. Also, ENF reduced the intensity of intracellular ROS in the live cell image by DCFDA assay. UVB is known to cause skin and cellular damage, then finally contribute to causing the formation of tumors. As for the strategies of reducing DNA damage by UVB, inhibition of p53, H2AX, and Chk2 can be important indexes to protect the human body from DNA damage. As a result of confirming the protective effect of ENF for UVB damage, MMPs significantly decreased, and the expression of apoptosis-related factors tended to decrease. In conclusion, ENF can provide protective effects against double-stranded DNA break (DSB) caused by oxidative DNA damage and UVB-induced DNA damage. These results are considered to be closely related to the protective effect against radicals based on catechin, epicatechin, and isoquercitrin contained in ENF. Based on these results, it is thought that additional mechanism studies for inhibiting cell damage are needed.

  • PDF