• Title/Summary/Keyword: double-porosity

Search Result 56, Processing Time 0.022 seconds

Development of Methodology for Fracture Network Analysis in the Unsaturated Zone using MINC Approach in TOUGH2 Code (TOUGH2 전산코드의 MINC 기법을 이용한 불포화 암반 내 단열 해석 방법론 개발)

  • Ha, Jaechul;Cheong, Jae-yeol;Kim, Soogin;Yoon, Jeonghyoun
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.325-330
    • /
    • 2016
  • The second phase of low- and intermediate-level waste (LILW) disposal facility is under planned on the sedimentary rock in unsaturated zone. In this study, we created two meshes which were a matrix continuum mesh and a fracture continuum mesh to carry out 2 dimensional numerical modeling for groundwater flow in the unsaturated zone containing fractures focused on the second phase of LILW disposal facility. Two continuum meshes were developed using MINC in meshmaker module of TOUGH2 code. A fracture continuum mesh was included the k-field distribution of the permeability derived from the Discrete Fractured Network (DFN) modeling. To apply the unsaturated zone for the modeling, the gridding steps to generate mesh were developed. Each step to generate a mesh consisted of definition of materials, setting the initial conditions and creating grids using MINC. The methodology development of meshes in this study will be applied for more precise modeling of groundwater flow and mass transport.

Pressure Drop of Integrated Hybrid System and Microbe-population Distribution of Biofilter-media (통합 하이브리드시스템의 압력강하 거동 및 바이오필터 담체의 미생물 population 분포)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.116-124
    • /
    • 2022
  • In this study, waste air containing ethanol and hydrogen sulfide, was treated by an integrated hybrid system composed of two alternatively-operating UV/photocatalytic reactor-process and biofilter processes of a biofilter system having two units with an improved design (R reactor) and a conventional biofilter (L reactor). Both a pressure drop (△p) per unit process of the integrated hybrid system and a microbe-population-distribution of each biofilter process were observed. The △p of the UV/photocatalytic reactor process turned out very negligible. The △p of the L reactor was observed to increase continuously to 4.0~5.0 mmH2O (i.e., 5.0~6.25 mmH2O/m). In case of R reactor, its △p showed the one below ca. 16~20% of the △p of the L reactor. Adopting such microbes-carrying biofilter media with high porosity as waste-tire crumb media, and the improved biofilter design, contributed to △p of this study, reduced by ca. 37~50% and 40~53%, respectively, from the reported △p of conventional biofilter packed with biofilter media of the mixture (50:50) of wood chip and wood bark. In addition, the △p of R reactor in this study, reduced by ca. 80% from the reported △p of conventional biofilter packed with biofilter media of the mixture (75:25) of scoria with high porosity and compost, was mainly attributed to adopting the improved biofilter design. On the other hand, in case of L reactor, the CFU counts in its lowest column was analyzed double as much as those in any other columns. However, in case of R reactor, its CFU counts were bigger by 50% than the one of L reactor and its microbes were evenly distributed at its higher and lower columns of Rdn reactor and Rup reactor. This phenomena was attributed to an even moisture distribution of 50~55% of R reactor at its higher and lower columns. Therefore, R reactor showed superb characteristics in terms of both △p and microbe-population-distribution, compared to L reactor.

Influence of Textural Structure by Heat-treatment on Electrochemical Properties of Pitch-based Activated Carbon Fiber (열처리 온도에 의한 피치계 활성탄소섬유의 기공구조 변화가 전기화학적 특성에 미치는 영향)

  • Kim, Kyung Hoon;Park, Mi-Seon;Jung, Min-Jung;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.598-603
    • /
    • 2015
  • In this study, electrochemical properties of pitch-based activated carbon fibers (ACFs) were investigated by different heat-treatment temperature of the pitch-based ACFs in order to improve the specific capacitance of electric double-layer capacitor (EDLC). The ACFs were prepared by different heat-treatment temperatures of 1050 and $1450^{\circ}C$, after activation with 4 M KOH at $800^{\circ}C$ using stabilized pitch fiber. The specific surface area of prepared ACFs increased from $828m^2/g$ to $987m^2/g$, also the micropore and mesopore volumes of prepared ACFs were increased. These results because pore was produced by desorbing oxygen and hydrogen elements within the ACFs, and pore size was increased by contraction ACFs by heat-treatment process. Because of the porous properties, the specific capacitance was increased from 73 F/g to 119 F/g using cyclic voltammetry with 1 M $H_2SO_4$ at scan rates of 5 mV/s.

Effect of Long-term Organic Matter Application on the Fine Textured Paddy Soils of Double Cropping System in Temperate Area (난지(暖地) 2모작(毛作) 세입질(細粒質) 논에서 유기물(有機物)의 연용(連用) 효과)

  • Yoo, Chul-Hyun;So, Jae-Don;Ida, Akira;Tanaka, Fukuyo;Nishida, Mizuhiko
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.4
    • /
    • pp.325-333
    • /
    • 1992
  • An investigation was carried out to find out the effects of long-term application (14 and 28 years) of rice straw, compost and wheat straw on changes in soil chemical and physical properities, aspests of releasing potential nitrogen and nitrogen uptake by rice and maize from fine textured paddy soils with double cropping system in warm temperate area. The result obtained were summarized as follows : 1. The long-term application of organic matters improved plow layer and soil physical properties : bulk density and solid phase were decreased, while porosity and gaseous phase were decreased. 2. Average increment of total carbon per year was 0.0371% and 0.0407% for rice straw and compost, respectively, from 1 through 14 years ; it was 0.0007% and 0.0014% for the rice straw and compost, respectively, from 15 years through 28 years. The average increment of total notrogen per year was 0.0025% and 0.038% for the rice straw and compost, respectively, from 1 through 14 years ; 0.0014% and 0.0024% for the same treatments from 15 through 28 years. 3. $NH_4-N$ and amide-N were high in the soils with wheat straw application for 28 years ; the amino sugar-N in the soils with compost application for 28 years ; amino acid -N in the soils with rice straw application for 14 and 28 years ; and unidentified-N, in the control. 4. The released amount of available nitrogen with the submerged condition was higher at $30^{\circ}C$ than at $25^{\circ}C$ during the incubation. The amount of released available nitrogen at the field was aproximately same as that of $25^{\circ}C$ incubation. However, the released amounts from the incubation and the field were always lower than those extracted with reagents. 5. The amount of nitrogen uptake by rice and maize was highly correlated with available nitrogen extracted with phosphate buffer(pH 7.0). 6. The ratio of yield increase(milled rice) was 17, 12 and 7%, respectively, by application of rice straw, compost and wheat straw for 28 years, and 11% by application of rice straw for 14 years.

  • PDF

A Prediction Model for Removal of Non-point Source Pollutant Considering Clogging Effect of Sand Filter Layers for Rainwater Recycling (빗물 재활용을 위한 모래 정화층의 폐색특성을 고려한 비점오염원 제거 예측 모델 연구)

  • Ahn, Jaeyoon;Lee, Dongseop;Han, Shinin;Jung, Youngwook;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.6
    • /
    • pp.23-39
    • /
    • 2014
  • An artificial rainwater reservoir installed in urban areas for recycling rainwater is an eco-friendly facility for reducing storm water effluence. However, in order to recycle the rainwater directly, the artificial rainwater reservoir requires an auxiliary system that can remove non-point source pollutants included in the initial rainfall of urban area. Therefore, the conventional soil filtration technology is adopted to capture non-point source pollutants in an economical and efficient way in the purification system of artificial rainwater reservoirs. In order to satisfy such a demand, clogging characteristics of the sand filter layers with different grain-size distributions were studied with real non-point source pollutants. For this, a series of lab-scale chamber tests were conducted to make a prediction model for removal of non-point source pollutants, based on the clogging theory. The laboratory chamber experiments were carried out by permeating two types of artificially contaminated water through five different types of sand filter layers with different grain-size distributions. The two artificial contaminated waters were made by fine marine-clay particles and real non-point source pollutants collected from motorcar roads of Seoul, Korea. In the laboratory chamber experiments, the concentrations of the artificial contaminated water were measured in terms of TSS (Total Suspended Solids) and COD (Chemical Oxygen Demand) and compared with each other to evaluate the performance of sand filter layers. In addition, the accumulated weight of pollutant particles clogged in the sand filter layers was estimated. This paper suggests a prediction model for removal of non-point source pollutants with theoretical consideration of the physical characteristics such as the grain-size distribution and composition, and change in the hydraulic conductivity and porosity of sand filter layers. The lumped parameter ${\theta}$ related with the clogging property was estimated by comparing the accumulated weight of pollutant particles obtained from the laboratory chamber experiments and calculated from the prediction model based on the clogging theory. It is found that the lumped parameter ${\theta}$ has a significant influence on the amount of the pollutant particles clogged in the pores of sand filter layers. In conclusion, according to the clogging prediction model, a double-sand-filter layer consisting of two separate layers: the upper sand-filter layer with the effective particle size of 1.49 mm and the lower sand-filter layer with the effective particle size of 0.93 mm, is proposed as the optimum system for removing non-point source pollutants in the field-sized artificial rainwater reservoir.

The Body of Male Domination and the Problem of the Phallic Ideology: The Strategy of the Deconstruction of Penis-Narcissism and the Penis-Cartel (남성지배의 몸과 남근 이데올로기의 문제: 페니스 나르시시즘과 페니스 카르텔의 해체전략)

  • YUN, Ji-Yeong
    • Journal of Korean Philosophical Society
    • /
    • no.123
    • /
    • pp.137-185
    • /
    • 2018
  • This article aims to deconstruct the mechanism of male domination that constantly reproduces the hegemonic class of men. In order to overcome misogyny, we should no longer deny the ontological dimension of the reality of women's oppressions and the pre-eminence of the material condition of women's existence. In addition, the possibility of the category of women as a modality of resistance should be taken into consideration. First, I will highlight the correlation between penis and phallus according to which the phallus refers to the penis which is malleable and fragile and which disappears without being castrated by the external factor. From here we could deduce the fragility and imperfection, the non-absoluteness of the phallic order. Secondly, I will analyze the mechanism of penis-narcissism, which is the modality of the constitution of the individual identity of man. The penis is not only a physiological organ, but a site of self-estimation and the validity of the succession of power and authority of the father's law. With this penis-narcissism, man is constituted as a hegemonic body that can let itself go without worrying about the reactions of others. Thirdly, I will focus on the mechanism of the penis-cartel which is the modality of the formation of the collective identity. The penis-cartel is reinforced by the mutual affirmation of the superiority of men among themselves, but also by the permission and the tacit agreement of their absurdity and lack of rationality and corruption. Because the privilege of men is not monopolized by a small part of the elite, but is consciously and unconsciously shared by all men who are part of the hegemonic and collective category. In order to deconstruct the penis-narcissism and the penis-cartel, it is necessary to demonstrate that the penis is not a self-sufficient body, nor a closed and impermeable body, but that it is a porous body where the organ serves both ejaculation and urinary ejection. The penis is a porous body that is at once the site of sublimity and degradation, purity and impurity. In addition, the penis is no longer an all-powerful and aggressive organ, but it is a malleable and fluid flesh that constantly changes its shape. Linked to a phallus-organ that is the notion of Jacques-Alain Miller, it is a site of deficiency and vulnerability that is not the axis of the penis-cartel. It is through the notion of the double porosity of the penis and the phenomenology of the flesh of the penis, I try to provide the modality of undoing the reproductive mechanism of predatory masculinity. Because this would be an effective strategy to overcome misogyny.