• Title/Summary/Keyword: double-layer structure

Search Result 388, Processing Time 0.026 seconds

Fabrication of Mesoporous Carbon Nanofibers for Electrical Double-Layer Capacitors (전기 이중층 커패시터용 메조 다공성 탄소 나노섬유의 제조)

  • Lee, Do-Young;An, Geon-Hyoung;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.617-623
    • /
    • 2017
  • Mesoporous carbon nanofibers as electrode material for electrical double-layer capacitors(EDLCs) are fabricated using the electrospinning method and carbonization. Their morphologies, structures, chemical bonding states, porous structure, and electrochemical performance are investigated. The optimized mesoporous carbon nanofiber has a high sepecific surface area of $667m^2\;g^{-1}$, high average pore size of 6.3 nm, and high mesopore volume fraction of 80 %, as well as a unifom network structure consiting of a 1-D nanofiber stucture. The optimized mesoporous carbon nanofiber shows outstanding electrochemical performance with high specific capacitance of $87F\;g^{-1}$ at a current density of $0.1A\;g^{-1}$, high-rate performance ($72F\;g^{-1}$ at a current density of $20.0A\;g^{-1}$), and good cycling stability ($92F\;g^{-1}$ after 100 cycles). The improvement of the electrochemical performance via the combined effects of high specific surface area are due to the high mesopore volume fraction of the carbon nanofibers.

Improvement of source-drain contact properties of organic thin-film transistors by metal oxide and molybdenum double layer

  • Kim, Keon-Soo;Kim, Dong-Woo;Kim, Doo-Hyun;Kim, Hyung-Jin;Lee, Dong-Hyuck;Hong, Mun-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.270-271
    • /
    • 2008
  • The contact resistance between organic semiconductor and source-drain electrode in Bottom Contact Organic Thin-Film Transistors (BCOTFTs) can be effectively reduced by metal oxide/molybdenum double layer structure; metal oxide layers including nickel oxide (NiOx/Mo) and moly oxide(MoOx) under molybdenum work as a high performance carrier injection layer. Step profiles of source-drain electrode can be easily achieved by simultaneous etching of the double layers using the difference etching rate between metal oxides and metal layers.

  • PDF

The Characteristics of Amorphous-Oxide-Semiconductor Thin-Film-Transistors According to the Active-Layer Structure (능동층 구조에 따른 비정질산화물반도체 박막트랜지스터의 특성)

  • Lee, Ho-Nyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1489-1496
    • /
    • 2009
  • Amorphous indium-gallium-zinc-oxide thin-film-transistors (TFTs) were modeled successfully. Dependence of TFT characteristics on structure, thickness, and equilibrium electron-density of the active layer was studied. For mono-active-layer TFTs, a thinner active layer had higher field-effect mobility. Threshold voltage showed the smallest absolute value for the 20 nm active-layer. Subthreshold swing showed almost no dependence on active-layer thickness. For the double-active-layer case, better switching performances were obtained for TFTs with bottom active layers with higher equilibrium electron density. TFTs with thinner active layers had higher mobility. Threshold voltage shifted in the minus direction as a function of the increase in the thickness of the layer with higher equilibrium electron-density. Subthreshold swing showed almost no dependence on active-layer structure. These data will be useful in optimizing the structure, the thickness, and the doping ratio of the active layers of oxide-semiconductor TFTs.

Deposition of Solar Selective Coatings for High Temperature Applications (고온용 태양 선택흡수막의 제작)

  • Lee, Kil-Dong
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.1
    • /
    • pp.33-42
    • /
    • 2008
  • Zr-O ($Zr-ZrO_2$) cermets solar selective coatings with a double cermets layer film structure were prepared using a DC (direct current) magnetron sputtering method. The typical film structure from surface to bottom substrate were an $Al_2O_3$ anti-reflection layer on a double Zr-O cermets layer on an Al metal infrared reflection layer. Optical properties of optimized Zr-O cermets solar selective coating had an absorptance of ${\alpha}\;=\;0.95$ and thermal omittance of ${\epsilon}\;=\;0.10\;(100^{\circ}C)$. The absorbing layer of Zr-O cermets coatings on glass and silicon substrate was identified as being amorphous by using XRD. AFM showed that ZF-O cermets layers were very smooth and their surface roughness were approximately $0.1{\sim}0.2 nm$. The chemical analysis of the cermets coatings were determined by using XPS. Chemical shift of photoelectron binding energy was occurred due to the change of Zr-O cermets coating structure deposited with increase in oxygen flow rate. The result of thermal stability test showed that the Zr-O cermets solar selective coating was stable for use at temperature below $350^{\circ}C$.

The Optimal Design and Electrical Characteritics of 1,700 V Class Double Trench Gate Power MOSFET Based on SiC (1,700 V급 SiC 기반의 단일 및 이중 트렌치 게이트 전력 MOSFET의 최적 설계 및 전기적 특성 분석)

  • Ji Yeon Ryou;Dong Hyeon Kim;Dong Hyeon Lee;Ey Goo Kang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.385-390
    • /
    • 2023
  • In this paper, the 1,700 V level SiC-based power MOSFET device widely used in electric vehicles and new energy industries was designed, that is, a single trench gate power MOSFET structure and a double trench gate power MOSFET structure were proposed to analyze electrical characteristics while changing the design and process parameters. As a result of comparing and analyzing the two structures, it can be seen that the double trench gate structure shows quite excellent characteristics according to the concentration of the drift layer, and the breakdown voltage characteristics according to the depth of the drift layer also show excellent characteristics of 200 V or more. Among them, the trench gate power MOSFET device can be applied not only to the 1,700 V class but also to a voltage range above it, and it is believed that it can replace all Si devices currently applied to electric vehicles and new energy industries.

A high efficiency green phosphorescent OLED with simple double emission layer structure

  • Kim, Sun-Young;Park, Tae-Jin;Jeon, Woo-Sik;Kim, Jong-Sil;Pode, Rachamdra;Jang, Jin;Kwon, Jang-Hyuk
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.30-33
    • /
    • 2008
  • Using a $Ir(ppy)_3$ doped in hole and electron transport host materials, simple three layers green PHOLEDs comprising double emissive layers have been fabricated. A low driving voltage value of 3.3 V to reach a luminance of $1000\;cd/m^2$ and maximum current- and power-efficiency values of 53.9 cd/A and 57.8 lm/W are demonstrated in this simple structure phosphorescent OLED.

  • PDF

Improvement of efficiency in Multi-layer IPMSM using Response Surface Methodology (반응 표면법을 이용한 Multi-layer 매입형 영구자석 동기정동기의 효율 향상)

  • Fang, Liang;Kwon, Soon-O;Lee, Sang-Ho;Zhang, Peng;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.777-778
    • /
    • 2006
  • This paper deals with the optimum rotor design approach about the multi-layer design of the buried magnets in an Interior Permanent Magnet Synchronous Motor (IPMSM), on the efficiency improvement by using Response Surface Methodology (RSM). In the multi-layer design of the prototype 15kw IPMSM, the constant amount of buried PM is split from the single-layer into double-layer design for improving the efficiency characteristics. The optimum double-layer rotor structure is built with the help of RSM analysis. The improvement of IPMSM efficiency is verified by the Finite Element Method (FEM) results comparison with the prototype single-layer IPMSM.

  • PDF

A Comparative Study on the Buckling Characteristics of Single-layer and Double-layer Lattice Dome According to Rise ratio (라이즈비에 따른 단층 및 복층 래티스 돔의 좌굴특성에 관한 비교연구)

  • 권영환;정환목;석창목;박상훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.283-289
    • /
    • 1998
  • In the latticed domes which is a set of space frame, buckling is derived if the external force reaches a limitation by the lightness of the material and the minimization of the member section area. these are concerned with a geometric shape, network pattern, the number of layer, and so on. Most of all, the number of layer of the lattice dome is a important factor from the viewpoint of initial and structure design. Therefore this study compared buckling characteristics of single-layer with double-layer latticed domes and investigated the relativity of buckling-stress-ratio and member-density-ratio according to rise ratio to improve that designers could extend the range of .design selection

  • PDF

Passivation Layer Structures with a Silicon Nitride film (질화실리콘막을 사용한 표면보호층 구조에 관한 연구)

  • 이종무
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.6
    • /
    • pp.53-57
    • /
    • 1985
  • Comparisons and analyses were made of the properties of double or triple passivation layer structures composed of APCVD SiOt or PSG and PECVD SiN films with various layer combinations and layer thicknesses. As a result of the analyses of the pro.peHics such as threshold-voltage shift, crack resistance, pinhole density, and moisture reslstancei a con-clusion was reached that the proper passivation layer structure is the double layer consisting of a 4,00$\AA$ or thicker PSG film and a 6,000$\AA$ SiN film.

  • PDF

An Overview of the Activated Carbon Fibers for Electrochemical Applications

  • Lee Gyoung-Ja;Pyun Su-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.1
    • /
    • pp.10-18
    • /
    • 2006
  • This article is concerned with the overview of the activated carbon fibers. Firstly, this review provides a comprehensive survey of the overall processes for the synthesis of the activated carbon fibers from the carbonaceous materials. Subsequently, the physicochemical properties such as pore structures and surface oxygen functional groups of the activated carbon fibers were discussed in detail. Finally, as electrochemical applications of the activated carbon fibers to electrode materials for electric double-layer capacitor (EDLC), the electrochemical characteristics of the activated carbon fiber electrodes and the various methods to improve the capacitance and rate capability were introduced. In particular, the effect of pore length distribution (PLD) on kinetics of double-layer charging/discharging was discussed based upon the experimental and theoretical results in our work. And then we discussed in detail the applications of the activated carbon fibers to adsorbent materials for purification of liquid and gas.