• Title/Summary/Keyword: double-frame

Search Result 247, Processing Time 0.023 seconds

Hysteresis Behavior of Semirigid CFT Column-to-Beam Connections with a Double Web-Angle (더블 웨브앵글 반강접 CFT 기둥-보 접합부의 이력거동)

  • Lee, Sung Ju;Kim, Joo Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.15-24
    • /
    • 2013
  • This paper presents the results from a systematic finite element study on the bending moment resisting capacity of double web-angle connection for a CFT(concrete filled tube) composite frame subjected to cyclic loading. The three-dimensional nonlinear finite element models are constructed to investigate the rotational stiffness, bending moment capacity, and failure modes of the partially restrained composite CFT connections. A wide scope of additional structural behaviors explain the different influences of the double web-angle connections parameters, such as the different thickness of connection angles and the gage distances of high strength steel connection bar. The moment-rotation angle relationships obtained statically from the finite element analysis are compared with those from Richard's theoretical equation.

Seismic Analysis of Mid Rise Steel Moment Resisting Frames with Relative Stiffness of Connections and Beams (접합부와 보의 상대강성을 고려한 중층 철골 모멘트 골조의 내진해석)

  • Ha, Sung-Hwan;Kang, Cheol-Kyu;Han, Hong-Soo;Han, Kweon-Gyu;Choi, Byong-Jeong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.595-606
    • /
    • 2011
  • This study was conducted to investigate the seismic behavior of steel member resisting frames considering the relative stiffness of the connection and beams. Six-story steel moment frames were designed to study the seismic behavior. The connections were classified into Double Web-Angle connections (DWAs), Top- and Seat-angles with double Web-angles (TWSs), FEMA-Test Summary No. 28, Specimen ID: UCSD-6 (SAC), and Fully Restrained (FR). The rotational stiffness of the semi-rigid connections was estimated using the Three-Parameter Power Model adopted by Chen and Kishi. The relative stiffness, which is the ratio of the rotational stiffness of the connections to the stiffness of the beams, was used. Push-over, repeated loading, and time history analysis were performed for all the frames. The seismic behavior of each frame was analyzed with the story drift, plastic hinge rotation, and hysteretic energy distribution.

Improvements of Performance of Multi-DOF Spherical Motor by Double Air-gap Feature

  • Lee, Ho-Joon;Park, Hyun-Jong;Won, Sung-Hong;Ryu, Gwang-Hyun;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.90-96
    • /
    • 2013
  • As the need of electric motor is increased rapidly throughout our society, the various application fields are created and the service market called robot gets expanded as well as the existing industrial market. Out of those, the joint systems such as humanoid that is servo actuator for position control or all fields which require multi-degree of freedom (multi-DOF) require the development of innovative actuator. It is multi-DOF spherical motor that can replace the existing system in multi-DOF operating system. But, multi-DOF spherical motor that has been researched up to date is at the stage which is insufficient in performance or mechanical practicality yet. Thus, first of all the research results and limitation of the previously-researched guide frame-type spherical motors were analyzed and then the feature of double air-gap spherical motor which was devised to complement that was studied. The double air-gap multi-DOF spherical motor is very suitable spherical motor for system applying which requires the multi-DOF operation due to its simple structure that does not require other guide frame as well as performance improvement due to its special shape which has two air-gaps. So, the validity of the study was verified by designing and producing it with 3D-FEM through the exclusive jig for multi-DOF spherical motor.

Key technologies research on the response of a double-story isolated structure subjected to long-period earthquake motion

  • Liang Gao;Dewen Liu;Yuan Zhang;Yanping Zheng;Jingran Xu;Zhiang Li;Min Lei
    • Earthquakes and Structures
    • /
    • v.26 no.1
    • /
    • pp.17-30
    • /
    • 2024
  • Earthquakes can lead to substantial damage to buildings, with long-period ground motion being particularly destructive. The design of high-performance building structures has become a prominent focus of research. The double-story isolated structure is a novel type of isolated structure developed from base isolated structure. To delve deeper into the building performance of double-story isolated structures, the double-story isolated structure was constructed with the upper isolated layer located in different layers, alongside a base isolated structure for comparative analysis. Nonlinear elastoplastic analyses were conducted on these structures using different ground motion inputs, including ordinary ground motion, near-field impulsive ground motion, and far-field harmonic ground motion. The results demonstrate that the double-story isolated structure can extend the structural period further than the base isolated structure under three types of ground motions. The double-story isolated structure exhibits lower base shear, inter-story displacement, base isolated layer displacement, story shear, and maximum acceleration of the top layer, compared to the base isolated structure. In addition, the double-story isolated structure generates fewer plastic hinges in the frame, causes less damage to the core tube, and experiences smaller overturning moments, demonstrating excellent resistance to overturning and a shock-absorbing effect. As the upper isolated layer is positioned higher, the compressive stress on the isolated bearings of the upper isolated layer in the double-story isolated structure gradually decreases. Moreover, the compressive stress on the isolated bearings of the base isolated layer is lower compared to that of the base isolated structure. However, the shock-absorbing capacity of the double-story isolated structure is significantly increased when the upper isolated layer is located in the middle and lower section. Notably, in regions exposed to long-period ground motion, a double-story isolated structure can experience greater seismic response and reduced shock-absorbing capacity, which may be detrimental to the structure.

Relationship of the U-Factor and Chemical Structure with Applied Metal and Polymer Material Assembly in Curtain Wall Frame

  • Park, Tongso
    • Korean Journal of Materials Research
    • /
    • v.31 no.8
    • /
    • pp.450-457
    • /
    • 2021
  • From measured thermal conductivity and modeling by simulation, this study suggests that U-factors are highly related to materials used between steel and polymer. The objective and prospective point of this study are to relate the relationship between the U-factor and the thermal conductivity of the materials used. For the characterization, EDX, SEM, a thermal conductive meter, and computer simulation utility are used to analyze the elemental, surface structural properties, and U-factor with a simulation of the used material between steel and polymer. This study set out to divide the curtain wall system that makes up the envelope into an aluminum frame section and entrance frame section and interpret their thermal performance with U-factors. Based on the U-factor thermal analysis results, the target curtain wall system is divided into fix and vent types. The glass is 24 mm double glazing (6 mm common glass +12 mm Argon +6 mm Low E). The same U-factor of 1.45 W/m2·K is applied. The interpretation results show that the U-factor and total U-value of the aluminum frame section are 1.449 and 2.343 W/m2·K, respectively. Meanwhile, those of the entrance frame section are 1.449 and 2.

A Convergence Study through Durability Analysis due to the Configuration of Automotive Frame Butted (자전거 프레임 버티드 형상에 따른 내구성 해석을 통한 융합연구)

  • Choi, Gye-Gwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.271-276
    • /
    • 2018
  • When the driver riding in a bicycle goes on board, the load of driver is shown differently according to the position loaded on the frame of bicycle. The load is applied most at the joint of bike frame and the load at the mid-part of frame is applied least than the other parts. So, the weight of frame is decreased as the part not applied with a lot of load is manufactured into the thin thickness. As the part applied with high load is manufactured into the thick thickness, it can be endured through this load. The configurations of general frame, double butted and triple butted were modelled by using CATIA program. The durabilities of each model due to the load of passenger were investigated by carrying the structural and fatigue analyses. As this study result investigated with the analysis program of ANSYS, the deformation of general frame happened most and that of triple butted became least. These simulation analysis data are intended to be used to design the actual bicycle frame in the most efficient way at design and manufacture.

A Study on the Vibration Characteristics of Stiffened Cylinder (보강된 실린더의 진동특성에 관한 연구)

  • Kim, Gwang-Rae;Jang, Yong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.408-414
    • /
    • 2001
  • The structural characteristics of the stiffened double cylinder was investigated through experiment and analysis. The outside cylinder was excited with piezoelectric actuator and the mode shape of the cylinder with stiffening T frame was obtained by using holographic interferometry. Finite element method was applied for further modal investigation of the stiffened cylinder. The experimental results showed that the mode shape of cylinder was dependent on the exciting frequencies and the T frame showed salient effect of damping at most of the resonent frequencies. In particular frequencies, the T frame worked as a transmitter. FFM showed similar results with the experiments. This paper showed that the laser-based method such as holographic interferometry is well suited for investigation of the whole-field mode shapes and FEM has good performance to estimate the medal characteristics of the mechanical structure.

Noise Barrier Design for Increased Sound Absorption (흡음률 증가를 위한 방음벽 구조)

  • Kim Hyun-Sil;Kim Jae-Seung;Kang Hyun-Joo;Kim Bong-Ki;Kim Sang-Ryul
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.367-370
    • /
    • 2001
  • Various shapes of the noise barrier frame and construction of the sound absorbing panels are studied. It is found that insertion of the sound absorbing panel into barrier frame results in the decrease of the sound absorption coefficient, while the empty frame shows a peak around 250Hz. Using double sound absorbing panels with air gap can increase sound absorption coefficient up to NRC 0.85.

  • PDF

LINEAR POLARIZATION OF A DOUBLE PEAKED BROAD EMISSION LINE IN ACTIVE GALACTIC NUCLEI

  • Lee, Hee-Won
    • Journal of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.59-65
    • /
    • 2011
  • A small number of active galactic nuclei are known to exhibit prominent double peak emission profiles that are well-fitted by a relativistic accretion disk model. We develop a Monte Carlo code to compute the linear polarization of a double peaked broad emission line arising from Thomson scattering. A Keplerian accretion disk is adopted for the double peak emission line region and the geometry is assumed to be Schwarzschild. Far from the accretion disk where flat Minkowski geometry is appropriate, we place an azimuthally symmetric scattering region in the shape of a spherical shell sliced with ${\Delta}{\mu}=0.1$. Adopting a Monte Carlo method we generate line photons in the accretion disk in arbitrary directions in the local rest frame and follow the geodesic paths of the photons until they hit the scattering region. The profile of the polarized flux is mainly determined by the relative location of the scattering region with respect to the emission source. When the scattering region is in the polar direction, the degree of linear polarization also shows a double peak structure. Under favorable conditions we show that up to 0.6% linear polarization may be obtained. We conclude that spectropolarimetry can be a powerful probe to reveal much information regarding the accretion disk geometry of these active galactic nuclei.

A Study on the Design and Manufacture of 1KW Double Cylinder Motor for a Hybrid Car (Hybrid 자동차용 1KW Double Cylinder Motor 설계 및 제작에 관한 연구)

  • Lee, Hyon-Jang;Song, Sen-Sen;Park, Chang-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.65-67
    • /
    • 2008
  • Recently, we are concerned about car energy efficiency because of high Price of oil. Hybrid cars are manufactured and used. Now most cars use BLDC Motor, but these motors generate cogging phenomenon due to its frame. As a result, cars are low efficiency and occur noise and vibration. In this paper, 1KW Double Cylinder Motor which is high efficiency, low noise and vibration by its no slot structure was designed and manufactured for a Hybrid car.

  • PDF