• Title/Summary/Keyword: double-beam

Search Result 529, Processing Time 0.028 seconds

Displacement Analysis of Structures using RTK-GPS/Accelerometer Integration Methods (RTK-GPS와 가속도계 통합계산을 통한 구조물의 변위 해석)

  • Hwang, Jin-Sang;Yun, Hong-Sic;Lee, Dong-Ha;Hong, Sung-Nam;Suh, Yong-Cheol
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.6
    • /
    • pp.583-591
    • /
    • 2011
  • Accurate observation results of dynamic displacements are essential to the protection of civil structures. In this study, we evaluated the optimal methods of the RTK/GPS Accelerometer integration through comparison and analysis of several experiments results. Two methods will be used to calculate the dynamic displacements from the results of the acceleration data as well as two integration methods for measuring the dynamic, static, and quasi-static displacements by incorporating the displacement results from the RTK-GPS and Accelerometer. By using a Cantilever Beam and LVDT measurement, we were able to ensure that the different displacement comparisons would be reliable and accurate. As a results from experiments, the accelerometer processing method applied by use of accelerometers data was filtering with the double integral using FIR band-pass filter which is most optimal for assessing the dynamic displacements. Also, the integrated method using extracting substitution displacements is suitable for measuring synthetically the dynamic static and quasi-static displacements of civil structures with RTK-GPS and accelerometer.

Luminous efficiency of ZnS:Sm,F TFEL devices (ZnS:Sm,F 형광체 박막 EL 소자의 발광효율)

  • 최광호;임영민;이철준;장보현
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.2
    • /
    • pp.111-116
    • /
    • 1992
  • ZnS:Sm, F TFEL devices with double insulating layer are prepared by e-beam evaporation method. Electroluminescence and luminous efficiency of the device fabricated at various conditions are investigated. The main transitions on the emission spectra for ZnS:Sm, F TFEL device occur at$^4G_{5/2}\to^6H_{9/2}^4G_{5/2}\to^6H_{7/2}, \;^4G_{5/2}\to^6H_{5/2}\to$.Among them, the dominant spectral line and its corresponding transition occur at $^4G_{5/2}\to^6H_{9/2}$(650 nm) and results in an orange-red emission color. The optimum concentration and substrate temperature for the ZnS:Sm, F TFEL device are around 1 wt% and $200^{\circ}C$. Luminous efficiency for the device is the largest at optimum condition.

  • PDF

Evaluation of Flexible Complementary Inverters Based on Pentacene and IGZO Thin Film Transistors

  • Kim, D.I.;Hwang, B.U.;Jeon, H.S.;Bae, B.S.;Lee, H.J.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.154-154
    • /
    • 2012
  • Flexible complementary inverters based on thin-film transistors (TFTs) are important because they have low power consumption and high voltage gain compared to single type circuits. We have manufactured flexible complementary inverters using pentacene and amorphous indium gallium zinc oxide (IGZO) for the p-channel and n-channel, respectively. The circuits were fabricated on polyimide (PI) substrate. Firstly, a thin poly-4-vinyl phenol (PVP) layer was spin coated on PI substrate to make a smooth surface with rms surface roughness of 0.3 nm, which was required to grow high quality IGZO layers. Then, Ni gate electrode was deposited on the PVP layer by e-beam evaporator. 400-nm-thick PVP and 20-nm-thick ALD Al2O3 dielectric was deposited in sequence as a double gate dielectric layer for high flexibility and low leakage current. Then, IGZO and pentacene semiconductor layers were deposited by rf sputter and thermal evaporator, respectively, using shadow masks. Finally, Al and Au source/drain electrodes of 70 nm were respectively deposited on each semiconductor layer using shadow masks by thermal evaporator. The characteristics of TFTs and inverters were evaluated at different bending radii. The applied strain led to change in voltage transfer characteristics of complementary inverters as well as source-drain saturation current, field effect mobility and threshold voltage of TFTs. The switching threshold voltage of fabricated inverters was decreased with increasing bending radius, which is related to change in parameters of TFTs. Throughout the bending experiments, relationship between circuit performance and TFT characteristics under mechanical deformation could be elucidated.

  • PDF

Hybrid complementary circuits based on organic/inorganic flexible thin film transistors with PVP/Al2O3 gate dielectrics

  • Kim, D.I.;Seol, Y.G.;Lee, N.E.;Woo, C.H.;Ahn, C.H.;Ch, H.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.479-479
    • /
    • 2011
  • Flexible inverters based on complementary thin-film transistor (CTFTs) are important because they have low power consumption and other advantages over single type TFT inverters. In addition, integrated CTFTs in flexible electronic circuits on low-cost, large area and mechanically flexible substrates have potentials in various applications such as radio-frequency identification tags (RFIDs), sensors, and backplanes for flexible displays. In this work, we introduce flexible complementary inverters using pentacene and amorphous indium gallium zinc oxide (IGZO) for the p-channel and n-channel, respectively. The CTFTs were fabricated on polyimide (PI) substrate. Firstly, a thin poly-4-vinyl phenol (PVP) layer was spin coated on PI substrate to make a smooth surface with rms surface roughness of 0.3 nm, which was required to grow high quality IGZO layers. Then, Ni gate electrode was deposited on the PVP layer by e-beam evaporator. 400-nm-thick PVP and 20-nm-thick ALD Al2O3 dielectric was deposited in sequence as a double gate dielectric layer for high flexibility and low leakage current. Then, IGZO and pentacene semiconductor layers were deposited by rf sputter and thermal evaporator, respectively, using shadow masks. Finally, Al and Au source/drain electrodes of 70 nm were respectively deposited on each semiconductor layer using shadow masks by thermal evaporator. Basic electrical characteristics of individual transistors and the whole CTFTs were measured by a semiconductor parameter analyzer (HP4145B, Agilent Technologies) at room temperature in the dark. Performance of those devices then was measured under static and dynamic mechanical deformation. Effects of cyclic bending were also examined. The voltage transfer characteristics (Vout- Vin) and voltage gain (-dVout/dVin) of flexible inverter circuit were analyzed and the effects of mechanical bending will be discussed in detail.

  • PDF

Visualization and Flowfield Measurements of the Vortical Flow over a Double-Delta Wing

  • Sohn, Myong-Hwan;Jang, Young-IL
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.63-74
    • /
    • 2003
  • The vortical flow of a 65-deg flat plate delta wing with a leading edge extension(LEX) was examined through off-surface visualization, 5-hole probe and hot-film measurements. The off-surface flow visualization technique used micro water droplets generated by a home-style ultrasonic humidifier and a laser beam sheet. The angles of attack ranged from 10 to 30 degrees, and the sideslip angles ranged from 0 to -15 degrees. The Reynolds number was $1.82{\times}10^5$ for the flow visualization, and $1.76{\times}10^6$ for the 5-hole probe and hot-film measurements. The comparison of the visualization photos and the flow field measurement showed that the two results were in a good agreement for the relative position and the structure of the wing and LEX vortices, even though the flow Reynolds numbers of the two results were much different. The wing vortex and the LEX vortex coil each other while maintaining a comparable strength and identity at zero sideslip. Neither a looping of the wing vortex around the strake vortex, nor the lopsided coiling of the stronger strake and the weaker wing vortices was observed. At non-zero sideslip, the downward movement of the LEX vortex when going downstream was enhanced on the windward side, and the downward and inboard movement of the LEX vortex when going downstream was suppressed on the leeward side. The counterclockwise coiling of the wing and LEX vortices was decreased significantly on the leeward side.

A Study on Mode I Interlaminar Fracture Toughness of Hybrid Composites (하이브리드 복합재료의 모드 I 층간파괴인성치에 관한 연구)

  • 김형진;곽대원;김재동;고성위
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.262-268
    • /
    • 2003
  • This paper describes the effect of loading rate, specimen geometries and material properties for Mode I interlaminar fracture toughness of hybrid composite by using double cantilever beam (DCB) specimen. In the range of loading rate 0.2-20mm/min, there is found to be no significant effect of loading rate with the value of critical energy release rate (G_IC). The value of $G_IC$ for variation of initial crack length are nearly similar values when material properties are CF/CF and GF/GF, however, the value of $G_IC/$ are highest with the increasing initial crack length at CF/GF. The SEM photographs show good fiber distribution and interfacial bonding of hybrid composites when the moulding is the CF/GF

DHC Characteristics of M11 Pressure Tube in Wolsong Unit 1

  • Kim, Sung-Soo;Kim, Young-Suk
    • Nuclear Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • Delayed hydride cracking (DHC) velocity and threshold stress intensity factor for DHC ($K_{IH}$) tests in the radial direction on M11 pressure tube material in Wolsong unit 1 were carried out following the Atomic Energy Canada Limited (AECL) standard test procedure in order to identify the effect of undercooling on DHCV and to acquire the $K_{IH}$ data. The results showed that $K_{IH}$ 's were 8.8$\pm$0.8 MPa√m in the back offcut and 11.4$\pm$0.7 MPa√m in the front offcut. The fact that $K_{IH}$ in the front offcut is about 20% higher than that in the back offcut is attributed to the microstructural difference between the materials of the front and back ends. $K_{IH}$ 's in M11 pressure tube appeared to be higher than the values from the tubes made of double melted ingot reported earlier. This can be interpreted by the fact that very small amounts of Chlorine (Cl) and Phosphorus (P) are contained in the ingot and that the content of the harmful elements in the M11 pressure tube is equivalent to that made of a quadruple melting process. DHC velocities at 25$0^{\circ}C$ in the front offcut in the radial direction are measured to be 5~8$\times$10$^{-8}$ m/s. The results show that the prior thermal history change the DHC velocity significantly. This effect was confirmed by the experiment of undercooling prior to the DHC tests.DHC tests.

  • PDF

DESIGN OPTIMIZATION OF RADIATION SHIELDING STRUCTURE FOR LEAD SLOWING-DOWN SPECTROMETER SYSTEM

  • KIM, JEONG DONG;AHN, SANGJOON;LEE, YONG DEOK;PARK, CHANG JE
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.380-387
    • /
    • 2015
  • A lead slowing-down spectrometer (LSDS) system is a promising nondestructive assay technique that enables a quantitative measurement of the isotopic contents of major fissile isotopes in spent nuclear fuel and its pyroprocessing counterparts, such as $^{235}U$, $^{239}Pu$, $^{241}Pu$, and, potentially, minor actinides. The LSDS system currently under development at the Korea Atomic Energy Research Institute (Daejeon, Korea) is planned to utilize a high-flux ($>10^{12}n/cm^2{\cdot}s$) neutron source comprised of a high-energy (30 MeV)/high-current (~2 A) electron beam and a heavy metal target, which results in a very intense and complex radiation field for the facility, thus demanding structural shielding to guarantee the safety. Optimization of the structural shielding design was conducted using MCNPX for neutron dose rate evaluation of several representative hypothetical designs. In order to satisfy the construction cost and neutron attenuation capability of the facility, while simultaneously achieving the aimed dose rate limit (< $0.06{\mu}Sv/h$), a few shielding materials [high-density polyethylene (HDPE)eBorax, $B_4C$, and $Li_2CO_3$] were considered for the main neutron absorber layer, which is encapsulated within the double-sided concrete wall. The MCNP simulation indicated that HDPE-Borax is the most efficient among the aforementioned candidate materials, and the combined thickness of the shielding layers should exceed 100 cm to satisfy the dose limit on the outside surface of the shielding wall of the facility when limiting the thickness of the HDPE-Borax intermediate layer to below 5 cm. However, the shielding wall must include the instrumentation and installation holes for the LSDS system. The radiation leakage through the holes was substantially mitigated by adopting a zigzag-shape with concrete covers on both sides. The suggested optimized design of the shielding structure satisfies the dose rate limit and can be used for the construction of a facility in the near future.

Optical system design for stereoscopic video-recorder (비디오 입체영상녹화를 위한 광학계 설계)

  • Hong, Kyung-Hee
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.506-509
    • /
    • 2002
  • An optical system for a stereoscopic video recorder is designed with the field of view 42$^{\circ}$ and effective diameter 22 mm. We can use it by attaching it to the front lens of any video camera or camcorder to record a stereoscopic scene. This system is a double Kepler type afocal system to make the image erect and a bi-ocular type to record and display the stereoscopic scene. The optical tube length is folded with several flat mirrors and a beam splitter to be compact. This optical system is composed of 4 groups of lenses and each group serves as a relay lens for minimizing the vignetting effect. Whole field stereoscopic scenes may be captured by perpendicularly polarized alternated recording with a chopper and two perpendicular polarizers, without any loss of light energy. The displayed images may be seen stereoscopically with polarized spectacles and are kinetic because of an afterimage effect.

A Study on Growth and Characterization of Magnetic Semiconductor GaMnAs Using LT-MBE (저온 분자선 에피택시법을 이용한 GaMnAs 자성반도체 성장 및 특성 연구)

  • Park Jin-Bum;Koh Dongwan;Park Young Ju;Oh Hyoung-taek;Shinn Chun-Kyo;Kim Young-Mi;Park Il-Woo;Byun Dong-Jin;Lee Jung-Il
    • Korean Journal of Materials Research
    • /
    • v.14 no.4
    • /
    • pp.235-238
    • /
    • 2004
  • The LT-MBE (low temperature molecular beam epitaxy) allows to dope GaAs with Mn over its solubility limit. A 75 urn thick GaMnAs layers are grown on a low temperature grown LT-GaAs buffer layer at a substrate temperature of $260^{\circ}C$ by varying Mn contents ranged from 0.03 to 0.05. The typical growth rate for GaMnAs layer is fixed at 0.97 $\mu\textrm{m}$/h and the V/III ratio is varied from 25 to 34. The electrical and magnetic properties are investigated by Hall effect and superconducting quantum interference device(SQUID) measurements, respectively. Double crystal X-ray diffraction(DCXRD) is also performed to investigate the crystallinity of GaMnAs layers. The $T_{c}$ of the $Ga_{l-x}$ /$Mn_{x}$ As films grown by LT-MBE are enhanced from 38 K to 65 K as x increases from 0.03 into 0.05 whereas the $T_{c}$ becomes lower to 45 K when the V/III ratio increases up to 34 at the same composition of x=0.05. This means that the ferromagnetic exchange coupling between Mn-ion and a hole is affected by the growth condition of the enhanced V/III ratio in which the excess-As and As-antisite defects may be easily incorporated into GaMnAs layer.