Browse > Article
http://dx.doi.org/10.3740/MRSK.2004.14.4.235

A Study on Growth and Characterization of Magnetic Semiconductor GaMnAs Using LT-MBE  

Park Jin-Bum (고려대학교 재료공학과)
Koh Dongwan (한국과학기술연구원 나노소자연구센터)
Park Young Ju (한국과학기술연구원 나노소자연구센터)
Oh Hyoung-taek (한국과학기술연구원 나노소자연구센터)
Shinn Chun-Kyo (한국과학기술연구원 나노소자연구센터)
Kim Young-Mi (한국기초과학지원연구원)
Park Il-Woo (한국기초과학지원연구원)
Byun Dong-Jin (고려대학교 재료공학과)
Lee Jung-Il (한국과학기술연구원 나노소자연구센터)
Publication Information
Korean Journal of Materials Research / v.14, no.4, 2004 , pp. 235-238 More about this Journal
Abstract
The LT-MBE (low temperature molecular beam epitaxy) allows to dope GaAs with Mn over its solubility limit. A 75 urn thick GaMnAs layers are grown on a low temperature grown LT-GaAs buffer layer at a substrate temperature of $260^{\circ}C$ by varying Mn contents ranged from 0.03 to 0.05. The typical growth rate for GaMnAs layer is fixed at 0.97 $\mu\textrm{m}$/h and the V/III ratio is varied from 25 to 34. The electrical and magnetic properties are investigated by Hall effect and superconducting quantum interference device(SQUID) measurements, respectively. Double crystal X-ray diffraction(DCXRD) is also performed to investigate the crystallinity of GaMnAs layers. The $T_{c}$ of the $Ga_{l-x}$ /$Mn_{x}$ As films grown by LT-MBE are enhanced from 38 K to 65 K as x increases from 0.03 into 0.05 whereas the $T_{c}$ becomes lower to 45 K when the V/III ratio increases up to 34 at the same composition of x=0.05. This means that the ferromagnetic exchange coupling between Mn-ion and a hole is affected by the growth condition of the enhanced V/III ratio in which the excess-As and As-antisite defects may be easily incorporated into GaMnAs layer.
Keywords
GaMnAs; LT-MBE; V/III ratio; As$_2$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Ohno, H. Munekata, T. Penney, S. V. Molnar and L. L. Chang, Phys. Rev. Lett., 68, 2664 (1992)   DOI   ScienceOn
2 T. Dietl and H. Ohno, Physica, E9, 185 (2001)   DOI   ScienceOn
3 M. Oestreich, M. Bender, J. Hubner and P. J. Klar, Semicond. Sci. Technol., 17, 285 (2002)   DOI   ScienceOn
4 M. Johnson, Semicond. Sci. Technol., 17, 298 (2002)   DOI   ScienceOn
5 T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, Science, 287, 1019 (2000)   DOI   ScienceOn
6 H. Munekata, H. Ohno, S. V. Molnar, A. Segmuller and L. L. Chang, Phys. Rev. Lett., 63, 1849 (1989)   DOI   ScienceOn
7 H. Ohno, Science, 281, 951 (1998)   DOI   ScienceOn
8 H. Sano, A. Suda, T. Hatanaka, G. Mizutani and N. Otsuka, J. Appl. Phys., 88, 3948 (1998)   DOI   ScienceOn
9 T. Hauashi, Y. Hashimoto, S. Katsumoto and Y. lye Appl. Phys. Lett., 78, 1691 (2001)   DOI   ScienceOn
10 H. Akai, Phys. Rev. Lett., 81, 3002 (1998)   DOI
11 A. V. Esch, J. D. Boeck, L. V. Bockstal, R. Bogarts, F. Herlach and G. Borghs, J. Phys. : Condens. Matter, 9, L361 (1997)   DOI   ScienceOn
12 A. Shen, F. Matsukura, S. P. Guo, Y. Sugawara, H. Ohno, M. Tani, H. Abe and H.C. Liu, J. Crystal Growth, 201/202, 679 (1999)   DOI   ScienceOn
13 A. Shen, Y. Horikoshi, H. Ohno and S. P. Guo, Appl. Phys. Lett., 71, 1540 (1997)   DOI   ScienceOn
14 H. Munekata, Materials Science and Eng., B31, 151 (1995)   DOI   ScienceOn
15 H. Ohno, F. Matsukura, T. Omiya and N. Akiba, J. Appl. Phys., 85, 4277 (1999)   DOI   ScienceOn
16 H. Munekata, H. Ohno, S. V. Molnar, A. Semuller, L. L. Chang and L. Esaki, Phys. Rev. Lett., 63, 1849 (1989)   DOI   ScienceOn
17 A. Oiwa, S. Katsumoto, A. Endo, M. Hirasawa, Y. lye, F. Matsukura and A. Shen, Physica, B249, 775 (1998)
18 M. Tanaka, Physica, E2, 372 (1998)   DOI   ScienceOn
19 H. Ohno, H. Munekata, S. V. Molnar and L. L. Chang, J. Appl. Phys., 69, 6103 (1991)   DOI
20 H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto and Y. Iye, Appl. Phys. Lett., 69, 363 (1996)   DOI   ScienceOn