• Title/Summary/Keyword: double integration method

Search Result 65, Processing Time 0.036 seconds

Acceleration of the Multi-Level Fast Multipole Algorithm using Double Interpolation Technique (이중 보간 기법을 이용한 MLFMA 가속기법)

  • Yun, Dal-Jae;Kim, Hyung-Ju;Lee, Jae-In;Yang, Seong-Jun;Yang, Woo-Yong;Bae, Jun-Woo;Myung, Noh-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.311-319
    • /
    • 2019
  • This paper proposes an acceleration of the multi-level fast multipole algorithm(MLFMA) by using a double interpolation method. The MLFMA has been primarily used to conduct scattering analysis of electrically large targets, e.g. stealth aircraft. In the MLFMA, radiation functions of each basis functions are first precomputed, and then aggregated. After transfer calculations for the aggregations, each interaction is disaggregated, and then received in the testing function. The key idea of the proposed method is to decrease the sampling rates of the radiation and receiving functions. The computational complexity of the unit sphere integration in terms of the testing functions is thus highly alleviated. The remaining insufficient sampling rate is then complemented by using additional interpolation. We demonstrate the performance of the proposed method through radar cross-section(RCS) calculations for realistic aircraft.

The Design of Broadband PIFA for Hand-Held Mobile Phones (이동통신 광대역 PIFA 안테나 설계 및 해석)

  • 김상준;이대헌;박천석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.855-862
    • /
    • 2003
  • This paper suggests the PIFA structure modified antenna in which short-circuit plate is located between planar element and ground plane, in order to solve the problem of narrow band of existing internal antenna, PIFA. It is also suggested that internal antenna has the perturbation in the patch to broaden the frequency bandwidth. It is possible that the antenna is installed into the mobile telephone with a low profile condition(h=0.015 λ) to use internally, and acquired desired bandwidth(5.2 %) through double resonance structure, remodeling the PIFA that is already well-known as an internal antenna. This paper investigated how characteristic is affected by the feeding point(Yf, Zf), short strip plate(Zs), short strip width(Ws), perturbation width(w), length(d), short plate height(h), dielectric($\varepsilon$$\_$r/) to be slim type antenna. It is compared with existing PIFA bandwidth, and is suggested pattern as the H.E plane. It is simulated using the Microwave Studio of the CST Inc. based on FIM(Finite Integration Method) method and analyzed antenna characteristic following the variation each parameters. The result proved the practical use of PIFA antenna by comparing the measured and simulated data of the antenna.

A Novel Integrative Expression Vector for Sulfolobus Species

  • Choi, Kyoung-Hwa;Hwang, Sungmin;Yoon, Naeun;Cha, Jaeho
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1503-1509
    • /
    • 2014
  • With the purpose of facilitating the process of stable strain generation, a shuttle vector for integration of genes via a double recombination event into two ectopic sites on the Sulfolobus acidocaldarius chromosome was constructed. The novel chromosomal integration and expression vector pINEX contains a pyrE gene from S. solfataricus P2 ($pyrE_{sso}$) as an auxotrophic selection marker, a multiple cloning site with histidine tag, the internal sequences of malE and malG for homologous recombination, and the entire region of pGEM-T vector, except for the multiple cloning region, for propagation in E. coli. For stable expression of the target gene, an ${\alpha}$-glucosidase-producing strain of S. acidocaldarius was generated employing this vector. The malA gene (saci_1160) encoding an ${\alpha}$-glucosidase from S. acidocaldarius fused with the glutamate dehydrogenase ($gdhA_{saci}$) promoter and leader sequence was ligated to pINEX to generate pINEX_malA. Using the "pop-in" and "pop-out" method, the malA gene was inserted into the genome of MR31 and correct insertion was verified by colony PCR and sequencing. This strain was grown in YT medium without uracil and purified by His-tag affinity chromatography. The ${\alpha}$-glucosidase activity was confirmed by the hydrolysis of $pNP{\alpha}G$. The pINEX vector should be applicable in delineating gene functions in this organism.

A dynamic analysis algorithm for RC frames using parallel GPU strategies

  • Li, Hongyu;Li, Zuohua;Teng, Jun
    • Computers and Concrete
    • /
    • v.18 no.5
    • /
    • pp.1019-1039
    • /
    • 2016
  • In this paper, a parallel algorithm of nonlinear dynamic analysis of three-dimensional (3D) reinforced concrete (RC) frame structures based on the platform of graphics processing unit (GPU) is proposed. Time integration is performed using Newmark method for nonlinear implicit dynamic analysis and parallelization strategies are presented. Correspondingly, a parallel Preconditioned Conjugate Gradients (PCG) solver on GPU is introduced for repeating solution of the equilibrium equations for each time step. The RC frames were simulated using fiber beam model to capture nonlinear behaviors of concrete and reinforcing bars. The parallel finite element program is developed utilizing Compute Unified Device Architecture (CUDA). The accuracy of the GPU-based parallel program including single precision and double precision was verified in comparison with ABAQUS. The numerical results demonstrated that the proposed algorithm can take full advantage of the parallel architecture of the GPU, and achieve the goal of speeding up the computation compared with CPU.

Perturbation analysis of localized deformation by dynamic strain aging (Dynamic strain aging 에 의한 국소변형의 perturbation analysis)

  • Yang, Seung-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.96-100
    • /
    • 2003
  • In the tensile loading of sheet metals made from polycrystalline aluminum alloys, a single deformation band appears inclined to the elongation axis in the early stage of plastic deformation, and symmetric double bands are observed in the later stage. This character of the localized deformation bands has been analyzed by a perturbation method. Macroscopic slip modes composed of slip planes and slip directions were assumed to describe the tensile and shear strains. Along time integration path, the value of the perturbation growth parameter was checked to find at which angle to the elongation axis the localized deformation bands are generated. It was shown that the mode of the localized deformation is related to asymmetry of material property.

  • PDF

Computation of the Mutual Radiation Impedance in the Acoustic Transducer Array: A Literature Survey

  • Paeng, Dong-Guk;Bok, Tae-Hoon;Lee, Jong-Kil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.2E
    • /
    • pp.51-59
    • /
    • 2009
  • Mutual radiation impedance becomes more important in the design and analysis of acoustic transducers for higher power, better beam pattern, and wider bandwidth at low frequency sonar systems. This review paper focused on literature survey about the researches of mutual radiation impedance in the acoustic transducer arrays over 60 years. The papers of mutual radiation impedance were summarized in terms of transducer array structures on various baffle geometries such as planar, cylindrical, spherical, conformal, spheroidal, and elliptic cylindrical arrays. Then the computation schemes of solving conventional quadruple integral in the definition of mutual radiation impedance were surveyed including spatial convolution method, which reduces the quadruple integral to a double integral for efficient computation.

Study on Steady Flow Effects in Numerical Computation of Added Resistance of Ship in Waves

  • Lee, Jae-Hoon;Kim, Beom-Soo;Kim, Yonghwan
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.193-203
    • /
    • 2017
  • This study investigated the steady-flow effects present in the numerical computation of the resistance added to a ship in waves. For a ship advancing in the forward direction, a time-domain 3D Rankine panel method is applied to solve the ship motion problem, and the added resistance due to waves is calculated using a near-field method, with the direct integration of the second-order pressure on the hull surface. In the linear potential theory, the steady flow is approximated by the basis potential of a uniform flow or double-body flow in order to linearize the boundary conditions. By applying these two different linearization schemes, the coupling effects between steady and unsteady solutions were examined. Furthermore, in order to analyze the steady-flow effects on the hull geometry, the computation results for two realistic hull forms, a KVLCC2 tanker and DTC containership, were compared. In particular, the mj term, which represents the coupling effects under the body boundary condition, was evaluated considering the geometry of a non-wall-sided ship. Lastly, the characteristics of the linearization schemes were examined in relation to the disturbed waves around a ship and the components of added resistance.

A Numerical Investigation of External and Internal Heat Transfer in A High Subsonic in Turbine Cascade (고 아음속 터빈 깃 주위의 열유동 및 내부 열전달에 관한 수치해석 연구)

  • Kim, Woo-Jin;Kim, Hyun-Shik;Kwak, Jae-Su;Kim, Hark-Bong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.1
    • /
    • pp.33-38
    • /
    • 2010
  • Developments of numerical methods are very important to design and analysis for a high subsonic turbine blade. In general, Analysis by experimental investigation has needed a lot of human resources and required time, indispensably, and equipments still have a limit to measure in conditions of high temperature. Rapid technological developments of CPU and integration level of memory make it possible to advance computation with almost exactly simulation so, recent developments of numerical methods are in spotlight. In the present study, the panel method, which is well-known as relatively simplified numerical method, and 2-dimensional ordinary differential Falkner-Skan equation were computed in order to analyze the outer flow, and FVM-based solid heat transfer equation, was also computed to forecast the temperature distribution of the airfoil and the turbine blade. Unstructured grid was constructed in the turbine blade, which has double cooling holes, in order to analyze the internal heat transfer. Cooling fluid was assumed as fully-developed turbulent flow and that circulated in cooling holes.

Measurement of the Slider-Disk Contact during Load/Unload process with AE and Electrical Resistance (Load/Unload 시 AE 와 전기저항을 이용한 슬라이더-디스크 충돌측정에 관한 연구)

  • Kim, Seok-Hwan;Lee, Yong-Hyun;Lim, Soo-Cheol;Park, Kyoung-Su;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.4
    • /
    • pp.160-166
    • /
    • 2007
  • In this paper, the measured electrical resistance method is proposed to analyze the ramp-tab contact during the load/unload (L/UL) process. Since this method supplies the voltage change due to the resistance change, we can easily and conveniently identify the ramp-tab contact from the acoustic emission (AE) signal. At first, we carefully deposit the conductive material on the surface of the conventional ramp by sputtering method. The ratio frequency (RF) magnetron co-sputtering system is applied to accomplish the deposited double-layers on the ramp surface. One layer is the stainless steel for the conductive layer and the other is the titanium layer for the cohesive function between the ramp surface and the stainless steel layer. In order to guarantee the stiffness and damping properties of the original ramp, the deposited conductive layer is intended to have very thin thickness. After integration the proposed ramp device into the L/UL system and networking the electrical resistance circuit, the L/UL performance is experimentally evaluated by comparing the measured electrical resistance signal and AE signal.

  • PDF

Magnetic Field Calculation of Toroidal Winding with Circular Section (단면이 원형인 토로이드 권선의 자속밀도 계산)

  • Lee, Sang-Jin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.1
    • /
    • pp.28-31
    • /
    • 2010
  • A magnetic field calculation method for toroidal type winding which has circular section was developed. At first, the equation for magnetic field by single filament coil was extended using numerical integration to estimate the entire interesting region of solenoid, especially winding region itself. And then, the magnetic field by toroidal arrangement of solenoids was computed with a coordinate transformation of vector fields. The superconducting magnet with toroidal arrangement can be made up of several tens of solenoid type double pancake windings for some applications such as superconducting magnetic energy storage system(SMES). In this system, the field calculation on the high-Tc superconducting(HTS) tape itself is very important because the entire system can be reached to a fault by magnetic stress of conductor or the critical current of superconducting tape can be dramatically reduced under its self field condition. To make matters worse, 3-dimensional analysis is indispensable for this type of magnet and the most of commercial programs with finite element method can be taken too much time for analysis and design. In this paper, a magnetic field calculation method for toroidal type winding with circular section was induced.