• Title/Summary/Keyword: double hull

Search Result 109, Processing Time 0.027 seconds

A study on hull girder shear strength in bulk carriers for CSR and Harmonized CSR (CSR-BC와 Harmonized CSR-BC의 선체 전단 응력에 대한 비교 고찰)

  • Park, Jong Min;Lee, Kyu Ho;Lee, Sang Bok;Shin, Sung-Kwang
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2015.09a
    • /
    • pp.46-49
    • /
    • 2015
  • Common Structural Rules (CSR) about bulk carriers and double-hull oil tankers of International Association of Classification Societies (IACS) has been applied to ships contracted for construction since April 2006. By unifying each society's rules, the difference of opinion in the between shipyard and ship owners, classification was reduced, and CSR has been evaluated by rules the safety structure more enhanced. However, The CSR about the bulk carriers and double hull oil tankers, important design content standards, such as the local scantling calculation, static/dynamic load case and corrosion margin and etc., are different. Therefore in order to combine the CSR, the Harmonized CSR for bulk carriers and double hull oil tankers (H-CSR) was issued on 1, January, 2014, and will be apply to ships contracted for construction after 1st July 2015. It is necessary to verify the H-CSR to optimize the structural arrangement because effective date is not far off. In this study, we compared the impact by rule change for the hull girder shear strength of bulk carriers between CSR and H-CSR in respect of the yielding and buckling strength.

  • PDF

A Comparative Study of Numerical and Theoretical Predictions of Oil Outflows from Damaged Ships (손상 선박 기름 유출량 추정을 위한 수치해석과 이론식의 비교 연구)

  • Yo-Seop, Moon;Je-In, Kim;Il-Ryong, Park;Seong-Bu, Suh;Seung-Guk, Lee;Hyuek-Jin, Choi;Sa-Young, Hong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.6
    • /
    • pp.400-412
    • /
    • 2022
  • This paper provides the results of numerical and theoretical predictions of oil outflows from damaged single-hull and double-hull ships.Theoretical equations derived from the unsteady Bernoulli equation and a CFD method for multi-phase flow analysis were used to estimate the oil outflow rate from cargo tank. The predicted oil outflow rate from a single-hull cargo tank damaged due to grounding and collision accidents showed a good agreement with the available experimental results in both numerical and theoretical analyses. However, in the case of the double-hull conditions, the time variation of the amount of water and oil mixture inside the ballast tank predicted by the theoretical equation showed some different behavior from the numerical results. The reason was that the interaction of the oil flow with the water inflow in the ballast tank was not reflected in the theoretical equations. In the problems of the initial pressure condition in the cargo and ballast tanks, the oil outflow and water inflow were delayed at the pressure condition that the tanks were sealed. When the flow interaction between the oil and water in the ballast tank was less complicated, the theoretical and the numerical results showed a good agreement with each other.

Some Characteristics of Straight-Framed V-Bottom Hull Forms. (V형직선선형(V型直線船型)의 특징(特徵))

  • Keuk-Chun,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.1 no.1
    • /
    • pp.9-16
    • /
    • 1964
  • As a pre-study for researches on powering characteristics of straight-framed V-bottom hull forms for usual commercial vessels, practicability of such a hull is investigated from viewpoints of over-all ship economy. For this purpose, a trawler hull of straight-elements with double chines, SV(T)-1, similar to Prof. Nevitt's W-8 in size and hull form coefficients was designed and tested at the SNU Ship Model Towing Tank for resistance measurements. The result is given in Fig.3 together with those of W-8 and other equivalent hulls of double curvature, such as FAO 135a-173, Doust and Takgi. The curves of the latters are reproduction of Prof. Nevitt's analysis, and given for comparison purpose. With in speed range of $9.0{\sim}10.5$ konts the resistance coefficients of SV(T)-1 are $18{\sim}25%$ higher than those of W-8, and $5{\sim}20%$ and $12{\sim}14%$ higher than those of FAO 135a-173 and Doust respectively. SV(T)-1, however, is slightly superior in resistance characteristics than Takagi's equivalent hull within the speed range. On the other hand, an equation for reduction rates of hull construction cost required to compensate for propulsion power increase in straight-elements hulls was derived from the definition of the economic efficiency of commercial vessels. The solution of the equation is given in Fig.4 graphically, from which it is known that $10{\sim}20%$ increase in propulsion power can be compensated by $8{\sim}16%$ reduction in hull construction cost. Considering simplicity and less equipments required in construction of straight -elements hulls, the author does argue for attainability of the above reduction rates in hull construction cost. Consequently, it is concluded that there is clear feasibility to adopt straight-elements hulls for usual commercial vessels of medium and small-size. And a further research will be done to obtain reliable data for chine shapes having good flowliness with the flow around ships depending on ship's size and speed.

  • PDF

A Study on Rescue Technique and Safe Tow of Damaged Ship (2) - Failure Mechanisms of Collision and Grounding of Double Hull Tanker - (손상된 선박의 구난 기술 및 안전 예항에 관한 연구 (2) - 이중선체 유조선의 충돌 및 좌초에 의한 손상역학거동 -)

  • Lee Sang-Gab;Choi Kyung-Sik;Shon Kyoung-Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.1 no.2
    • /
    • pp.82-95
    • /
    • 1998
  • In this paper, two series of numerical simulations are performed using LS/DYNA3D: The first series of numerical simulations are collision events between a 310,000 DWT double hull VLCC (struck ship) and two 35,000 and 105,000 DWT tankers (striking ships). Collisions are assumed to occur at the middle of the VLCC with the striking ships moving at right angle to the YLCC centerline. The second ones, grounding accidents of two 40,000 DWT Conventional and Advanced Double Hull lanker bottom structures, CONV/PD328 and ADH/PD328 models. The overall objective of this study is to understand the structural failure and energy absorbing mechanisms during collision and grounding events for double hull tanker side and bottom structures, which lead to the initiation of inner shell rupture and cause the kinetic energy dissipation to bring the ship to a stop. These numerical simulations will contribute to the estimation of damage extents of collision and grounding accidents and the future improvements in lanker safety at the design stage.

  • PDF

Effect of corrosion on the ultimate strength of double hull oil tankers - Part I: stiffened panels

  • Kim, Do Kyun;Park, Dae Kyeom;Kim, Jeong Hwan;Kim, Sang Jin;Kim, Bong Ju;Seo, Jung Kwan;Paik, Jeom Kee
    • Structural Engineering and Mechanics
    • /
    • v.42 no.4
    • /
    • pp.507-530
    • /
    • 2012
  • Age-related problems especially corrosion and fatigue are normally suffered by weatherworn ships and aging offshore structures. The effect of corrosion is one of the important factors in the Common Structural Rule (CSR) guideline of the ship design based on a 20 or 25 years design life. The aim of this research is the clarification of the corrosion effect on ultimate strength of stiffened panels on various types of double hull oil tankers. In the case of ships, corrosion is a phenomenon caused by the ambient environment and it has different characteristics depending on the parts involved. Extensive research considering these characteristic have already done by previous researchers. Based on this data, the ultimate strength behavior of stiffened panels for four double hull oil tankers such as VLCC, Suezmax, Aframax, and Panamax classes are compared and analyzed. By considering hogging and sagging bending moments, the stiffened panels of the deck, inner bottom and outer bottom located far away from neutral axis of ship are assessed. The results of this paper will be useful in evaluating the ultimate strength of an oil tanker subjected to corrosion. These results will be an informative example to check the effect of ultimate strength of a stiffened panel according to corrosion addition from CSR for a given type of ship.

Prediction of Oil Outflows from Damaged Ships using CFD Simulations (손상 선박의 기름 유출량 예측을 위한 CFD 시뮬레이션)

  • Moon, Yo-Seop;Park, Il-Ryong;Kim, Je-In;Suh, Seong-Bu;Lee, Seung-Guk;Choi, Hyuek-Jin;Hong, Sa-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.394-405
    • /
    • 2022
  • This paper presents the numerical estimation results of oil outflows from damaged single-hull and double-hull ships by using computational fluid dynamics (CFD) simulations. A CFD method for multi-phase flow analysis was used, and the effects of numerical parameters on oil flows was investigated. Numerical simulations were conducted to predict the changes in oil outflows under various damage conditions owing to grounding or collision accidents and verified through available experimental results. The present numerical results showed a good agreement with the experimental results according to the geometrical characteristics of single and double hulls. In particular, the oil outflows from double hulls accompanying complex interactions between water and oil were reasonably predicted a shown in the experiment. This study established a reliable CFD technique necessary for estimating the oil outflows of damaged ships.

Optimum Structural Design of Mid-ship Section of D/H Tankers Based on Common Structural Rules (CSR 을 활용한 이중선각유조선 중앙단면의 최적구조설계)

  • Na, Seung-Soo;Jeon, Hyoung-Geun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.151-156
    • /
    • 2008
  • It is necessary to perform the research works on the general structural designs and optimum structural designs of double hull tankers and bulk carriers due to the newly built Common Structural Rules(CSR). In this study, an optimum structural design of a mid-ship part of double hull oil tanker was carried out by using the CSR. An optimum structural design program was developed by using the Pareto optimal based multi-objective function method. The hull weight and fabrication cost obtained by the single and multi-objective function methods were compared with existing ship by the consideration of CSR and material cost which is recently increasing.

Development of Automatic Painting Unit for Back-side of Longitudinal Stiffeners in Double Hull Blocks (선체블록 론지 이면부 자동 도장 장비 개발)

  • Kim, Eun-Tae;Lee, Dong-Hoon;Kim, Ho-Kyung
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2009.09a
    • /
    • pp.123-129
    • /
    • 2009
  • Ship painting procedures can be divided into two categories; Out-shell plate painting of the hull and the interior painting of each double gull blocks. It is really hard to apply standardized and automated operations to the latter because the double hull blocks contains a variety of complicated supportive materials and pipes to strengthen the ship structure. In addition their poor working conditions cause painting workers to avoid working in them, resulting in the waste of paints and additional pollution issues. So this research, successfully focused on overcoming the difficulties in working in the complicated blocks and the tough working conditions introduces the main details of automatic equipment systems and their transfer algorism which show how the equipment paints the inner sides of a longitudinal stiffener and moves to another automatically.

  • PDF

A Comparative Study on the Institute Time Clauses-Hulls 1995, American Institute Hulls Clauses 1977 and Japanese Hull Standard Clauses, 1990 (영국.미국.일본선박보험약관의 비교연구 -오염손해, 보험사고 발생의 통지의무, 신구교환차익공제 및 중복보험에 관한 규정을 중심으로-)

  • Hong, Sung-Hwa;Kim, Ki-Ung
    • Journal of Navigation and Port Research
    • /
    • v.26 no.1
    • /
    • pp.66-77
    • /
    • 2002
  • Generally hull insurance is undertaken by mean of a contract of hull insurance. A contract of hul1 insurance here is a contract whereby the insurer undertakes to indemnify the assured against the loss and damage to the vessel mused by maritime perils. A contract of hull insurance is consists of printed main insurance clauses and a clause includes many sub-clauses. Now the Institute Time Clauses-Hulls (hereunder refer to as "English hull insurance clauses"made by the Institute of London Underwriters is much used as the standard from or basic from by many countries ail over the world Now Korean insurance companies hue not made our their own hull insurance clauses, they have just adopted the made-out English hull insurance clauses and the english law and practice to solve the problem related to marine insurance. On the other hand, the United States of America and Japan have made out their own hull insurance clauses based on English hull insurance clauses and used the clauses for many years. Now American is using American Institute Hull Clauses(hereunder refer to as "American hul1 insurance clauses"as its own clauses which was made out by American Institute of Marine Underwriters in 1977 and Japan is also wing its own clauses named Japanese Hull Standard Clauses(hereunder refer to as "Japanese hull clauses") which was made out by japanese Hull Insurance Association in 1990. Therefore the purpose of this study is not only to make a comparative study on English hull insurance clauses 1995, American hull insurance clauses 1977 and Japanese hull clauses l990, but also to supply on some legal materials necessary for Korea to establish and perform our own hull insurance clauses.