DOI QR코드

DOI QR Code

Prediction of Oil Outflows from Damaged Ships using CFD Simulations

손상 선박의 기름 유출량 예측을 위한 CFD 시뮬레이션

  • Moon, Yo-Seop (Department. of Naval Architecture & Ocean Engineering, Dong-Eui University) ;
  • Park, Il-Ryong (Department. of Naval Architecture & Ocean Engineering, Dong-Eui University) ;
  • Kim, Je-In (Marine Hydrodynamic Performance Research Center, Dong-Eui University) ;
  • Suh, Seong-Bu (Department. of Naval Architecture & Ocean Engineering, Dong-Eui University) ;
  • Lee, Seung-Guk (Korea Research Institute of Ships & Ocean Engineering) ;
  • Choi, Hyuek-Jin (Korea Research Institute of Ships & Ocean Engineering) ;
  • Hong, Sa-Young (Korea Research Institute of Ships & Ocean Engineering)
  • 문요섭 (동의대학교 조선해양공학과) ;
  • 박일룡 (동의대학교 조선해양공학과) ;
  • 김제인 (동의대학교 조선해양유체성능평가연구소) ;
  • 서성부 (동의대학교 조선해양공학과) ;
  • 이승국 (선박해양플랜트연구소) ;
  • 최혁진 (선박해양플랜트연구소) ;
  • 홍사영 (선박해양플랜트연구소)
  • Received : 2022.02.25
  • Accepted : 2022.04.27
  • Published : 2022.04.30

Abstract

This paper presents the numerical estimation results of oil outflows from damaged single-hull and double-hull ships by using computational fluid dynamics (CFD) simulations. A CFD method for multi-phase flow analysis was used, and the effects of numerical parameters on oil flows was investigated. Numerical simulations were conducted to predict the changes in oil outflows under various damage conditions owing to grounding or collision accidents and verified through available experimental results. The present numerical results showed a good agreement with the experimental results according to the geometrical characteristics of single and double hulls. In particular, the oil outflows from double hulls accompanying complex interactions between water and oil were reasonably predicted a shown in the experiment. This study established a reliable CFD technique necessary for estimating the oil outflows of damaged ships.

본 논문은 CFD 해석법을 이용한 단일선체 및 이중선체 선박의 손상에 따른 기름 유출량 추정 결과를 소개한다. 수치해석 기법으로 다상유동 해석법을 사용하고 기름 유출 유동에 대한 다양한 수치해석적 조건의 변화에 대한 영향을 조사하였다. 좌초 또는 충돌에 의한 다양한 손상 조건에서의 기름 유출량의 변화를 해석하였으며 실험 결과를 통해 검증하였다. 본 논문의 수치해석 결과는 단일선체와 이중선체의 기하학적 특성을 따라 실험 결과와 잘 일치하였다. 특별히 물과 기름의 복잡한 상호작용이 나타나는 이중선체의 기름 유출 상황도 실험과 동일하게 타당하게 예측하였다. 본 연구를 통해 사고 선박의 기름 유출량 추정에 필요한 CFD기법을 정립할 수 있었다.

Keywords

Acknowledgement

본 논문은 2022년 해양경찰청 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구입니다(해양오염방지 긴급구난 의사결정 지원기술 개발 4/5, PMS5400).

References

  1. Forbes, G. L.(2008), The Braer oil spill incident-Shetland, January 1993, International Journal of Environmental Health Research, Vol. 4, pp. 48-59. https://doi.org/10.1080/09603129409356797
  2. Kim, C. K., J. H. Oh, and S. G. Kang(2016), A review of Deepwater Horizon Oil Budget Calculator for its Application to Korea, Journal of the Korean Society for Marine Environmental Engineering, Vol. 19, No. 4, pp. 322-331. https://doi.org/10.7846/JKOSMEE.2016.19.4.322
  3. Kim, W. J. and Y. Y. Lee(2001), A Preliminary Study for the Prediction of Leaking-Oil Amount from a Rupture Tank, Journal of the Korean Society for Marine Environmental Engineering, Vol. 4, No. 4, pp. 21-31.
  4. Kim, W. J., Y. Y. Lee, and J. K. Yum(2001), Experimental and Computational study for the Prediction of Leaking-Oil Amount from a Ruptured Tank, The Korean Society for Marine Environment & Energy, pp. 5-14.
  5. Lee, S. J.(2008), A Study on Social Impacts of the Hebei Spirit Oil Spill Accident in Korea, ECO, Vol. 12, No. 1, pp. 109-144.
  6. Lu, J. S., F. C. Liu, and Z. Y. Zhu(2014), Effects of initial water layer thickness on oil leakage from damaged DHTs, The Twenty-fourth International Ocean and Polar Engineering Conference, Busan, Korea. ISOPE-I-14-009.
  7. Lu, J., Z. Yang, H. Wu, W. Wu, F. Xu, H. Yang, and S. Yan(2016), Model experiment on the dynamic process of oil leakage from the double hull tanker, Journal of Loss Prevention in the Process Industries, Vol. 43, pp. 174-180. https://doi.org/10.1016/j.jlp.2016.05.013
  8. Lu, J., Z. Yang, H. Wu, W. Wu, J. Deng, and S. Yan(2018), Effects of tank sloshing on submerged oil leakage from damaged tankers, Proc. of Ocean Engineering, Vol. 168, No. 15, pp. 115-172.
  9. Muzaferija, S. and M. Peric(1999), Computation of free surface flows using interface-tracking and interface-capturing methods. In Mahrenholtz, O. & Markiewicz, M., eds. Nonlinear Water Wave Interaction. pp. 59-100, WIT Press.
  10. Patankar, S. V.(1980), Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation.
  11. Siemens(2019), STAR-CCM+ User Guide. Version 14.04.
  12. Simecek-Beatty, D., W. J. Lehr, and J. F. Lankford(2001), Leaking tank experiments With Orimulsion and Canola Oil, National Oceanic and Atmospheric Administration, pp. 1-30.
  13. Tavakolli, M. T., J. Amdahl, A. Ashrafian, and B. J. Leira(2008), Analytical predictions of oil spillage from grounded cargo tankers, Proc. of Proceedings of the ASME 27th International Conference on Offshore Mechanics and Arctic Engineering, OMAE2008-57913, pp. 911-920.
  14. Tavakolli, M. T., J. Amdahl, and B. J. Leira(2009), Investigation of interaction between oil spills and hydrostatic changes, Proc. of Proceedings of the ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2008-57913, pp. 803-811.
  15. Tavakolli, M. T., J. Amdahl, and B. J. Leira(2011), Experimental investigation of oil leakage from damaged ships due to collision and grounding, Proc. of Ocean Engineering, Vol. 38, pp. 841-865.
  16. Yang, H., S. Yan, Q. Ma, J. Lu, and Y. Zhou(2017), Turbulence modelling and role of compressibility on oil spilling from a damaged double hull tank, Proc. of International Journal for Numerical Methods in Fluids, Vol. 83, No. 11, pp. 841-865. https://doi.org/10.1002/fld.4294