• Title/Summary/Keyword: double gimbal

Search Result 4, Processing Time 0.019 seconds

Fabrication of Planar Vibratory Gyroscope Using Electromagnetic Force (전자력을 이용한 평면 진동형 자이로스코프의 제작)

  • Lee, Sang-Hun;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.195-197
    • /
    • 1993
  • In this paper, a planar vibratory gyroscope is designed and fabricated in macro model. Elementary experiment and test are done for micro model. This gyroscope has a double gimbal structure with an active dimension $80{\times}120{\times}1\;mm^3$. Outer gimbal vibration is generated by electromagnetic force using ferrite E-core wounded by coil. Inner gimbal vibration is detected by inductive sensor. It is demonstrated' that mechanical and electrical symmetries are important for improvement of vibratory gyroscope.

  • PDF

Attitude Controller Design for a Bias Momentum Satellite with Double Gimbal (더블김벌을 장착한 바이어스 모멘텀 위성의 자세제어기 설계)

  • Park, Young-Woong;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.34-42
    • /
    • 2004
  • In this paper, a double gimbal is used for roll/yaw attitude control of spacecraft and two feedback controllers are designed. One is a PD controller of no phase difference between roll and yaw control input. The other is a PD controller with a phase lag compensator about the yaw control input. The phase lag compensator is designed a first order system and a lag parameter is designed for the control of yaw angle. There are two case simulations for each of controllers; constant disturbance torques and initial errors of nutation. We obtain the results through simulations that a steady-state error and a rising time of yaw angle are developed by the compensator. In this paper, simulation parameters use the values of KOREASAT 1.

Roll/yaw controller design using double gimbaled momentum wheel (더블김벌 모멘텀휠을 이용한 롤/요 제어기 설계)

  • 박영웅;방효충
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1099-1102
    • /
    • 1996
  • In this paper, roll/yaw attitude control of spacecraft using a double gimbaled wheel is discussed with two feedback controllers designed. One is a PD controller with no phase difference between roll and yaw control input. The other is a PD controller with a phase lag compensator about the yaw control input. The phase lag compensator is designed as a first order system and a lag parameter is designed for the yaw angle control. There are two case simulations for each controller ; constant disturbance torques and initial errors of nutation at motion. We obtain the results through simulations that steady-state error and rising time of yaw angle are determined by the compensator. Simulation parameters used in this study are the values of KOREASAT F1.

  • PDF

Design and performance test of a foot for a jointed leg type quadrupedal walking robot (관절형 4족 보행로봇용 발의 설계 및 성능시험)

  • Hong, Ye-Seon;Yi, Su-Yeong;Ryu, Si-Bok;Lee, Jong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1250-1258
    • /
    • 1997
  • This paper reports on the development of a new foot for a quadrupedal jointed-leg type walking robot. The foot has 2 toes, one at the front and the other at the rear side, for stable landing on uneven ground by point contact. The toes can move up and down independantly, guided by double-wishbone shaped parallel links which enable the lower leg to rotate with respect to a remote center on the ground surface. The motion of each toe is damped by a hydropneumatic shock absorber integrated in the foot in order to absorb the dynamic landing shock. Furthermore, the new foot can reduce the maximum hip joint drive torque by shortening the moment arm length between the hip joint and the landing force vector on the ground. Intensive experiments were carried out in this study by using a one-leg walking model to investigate the soft landing performance of the foot which could be hardly offered by conventional robot feet such as a flat plate with a gimbal type ankle joint. And it was confirmed that the hip joint torque of the leg walking on the flat surface could be reduced remarkably by using the new foot.