• Title/Summary/Keyword: double censoring

Search Result 5, Processing Time 0.017 seconds

Estimation for the Half Logistic Distribution Based on Double Hybrid Censored Samples

  • Kang, Suk-Bok;Cho, Young-Seuk;Han, Jun-Tae
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.6
    • /
    • pp.1055-1066
    • /
    • 2009
  • Many articles have considered a hybrid censoring scheme, which is a mixture of Type-I and Type-II censoring schemes. We introduce a double hybrid censoring scheme and derive some approximate maximum likelihood estimators(AMLEs) of the scale parameter for the half logistic distribution under the proposed double hybrid censored samples. The scale parameter is estimated by approximate maximum likelihood estimation method using two different Taylor series expansion types. We also obtain the maximum likelihood estimator(MLE) and the least square estimator(LSE) of the scale parameter under the proposed double hybrid censored samples. We compare the proposed estimators in the sense of the mean squared error. The simulation procedure is repeated 10,000 times for the sample size n = 20(10)40 and various censored samples. The performances of the AMLEs and MLE are very similar in all aspects but the MLE and LSE have not a closed-form expression, some numerical method must be employed.

Dimension reduction for right-censored survival regression: transformation approach

  • Yoo, Jae Keun;Kim, Sung-Jin;Seo, Bi-Seul;Shin, Hyejung;Sim, Su-Ah
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.3
    • /
    • pp.259-268
    • /
    • 2016
  • High-dimensional survival data with large numbers of predictors has become more common. The analysis of such data can be facilitated if the dimensions of predictors are adequately reduced. Recent studies show that a method called sliced inverse regression (SIR) is an effective dimension reduction tool in high-dimensional survival regression. However, it faces incapability in implementation due to a double categorization procedure. This problem can be overcome in the right-censoring type by transforming the observed survival time and censoring status into a single variable. This provides more flexibility in the categorization, so the applicability of SIR can be enhanced. Numerical studies show that the proposed transforming approach is equally good to (or even better) than the usual SIR application in both balanced and highly-unbalanced censoring status. The real data example also confirms its practical usefulness, so the proposed approach should be an effective and valuable addition to usual statistical practitioners.

Nonparametric estimation of conditional quantile with censored data (조건부 분위수의 중도절단을 고려한 비모수적 추정)

  • Kim, Eun-Young;Choi, Hyemi
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.2
    • /
    • pp.211-222
    • /
    • 2013
  • We consider the problem of nonparametrically estimating the conditional quantile function from censored data and propose new estimators here. They are based on local logistic regression technique of Lee et al. (2006) and "double-kernel" technique of Yu and Jones (1998) respectively, which are modified versions under random censoring. We compare those with two existing estimators based on a local linear fits using the check function approach. The comparison is done by a simulation study.

Estimation of Conditional Kendall's Tau for Bivariate Interval Censored Data

  • Kim, Yang-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.6
    • /
    • pp.599-604
    • /
    • 2015
  • Kendall's tau statistic has been applied to test an association of bivariate random variables. However, incomplete bivariate data with a truncation and a censoring results in incomparable or unorderable pairs. With such a partial information, Tsai (1990) suggested a conditional tau statistic and a test procedure for a quasi independence that was extended to more diverse cases such as double truncation and a semi-competing risk data. In this paper, we also employed a conditional tau statistic to estimate an association of bivariate interval censored data. The suggested method shows a better result in simulation studies than Betensky and Finkelstein's multiple imputation method except a case in cases with strong associations. The association of incubation time and infection time from an AIDS cohort study is estimated as a real data example.

A semiparametric method to measure predictive accuracy of covariates for doubly censored survival outcomes

  • Han, Seungbong;Lee, JungBok
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.4
    • /
    • pp.343-353
    • /
    • 2016
  • In doubly-censored data, an originating event time and a terminating event time are interval-censored. In certain analyses of such data, a researcher might be interested in the elapsed time between the originating and terminating events as well as regression modeling with risk factors. Therefore, in this study, we introduce a model evaluation method to measure the predictive ability of a model based on negative predictive values. We use a semiparametric estimate of the predictive accuracy to provide a simple and flexible method for model evaluation of doubly-censored survival outcomes. Additionally, we used simulation studies and tested data from a prostate cancer trial to illustrate the practical advantages of our approach. We believe that this method could be widely used to build prediction models or nomograms.