• Title/Summary/Keyword: dosimetric characterization

Search Result 7, Processing Time 0.026 seconds

Dosimetric characterization and commissioning of a superficial electronic brachytherapy device for skin cancer treatment

  • Park, Han Beom;Kim, Hyun Nam;Lee, Ju Hyuk;Lee, Ik Jae;Choi, Jinhyun;Cho, Sung Oh
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.937-943
    • /
    • 2018
  • Background: This work presents the performance of a novel electronic brachytherapy (EBT) device and radiotherapy (RT) experiments on both skin cancer cells and animals using the device. Methods and materials: The performance of the EBT device was evaluated by measuring and analyzing the dosimetric characteristics of X-rays generated from the device. The apoptosis of skin cancer cells was analyzed using B16F10 melanoma cancer cells. Animal experiments were performed using C57BL/6 mice. Results: The X-ray characteristics of the EBT device satisfied the accepted tolerance level for RT. The results of the RT experiments on the skin cancer cells show that a significant apoptosis induction occurred after irradiation with 50 kVp X-rays generated from the EBT device. Furthermore, the results of the animal RT experiments demonstrate that the superficial X-rays significantly delay the tumor growth and that the tumor growth delay induced by irradiation with low-energy X-rays was almost the same as that induced by irradiation with a high-energy electron beam. Conclusions: The developed new EBT device has almost the same therapeutic effect on the skin cancer with a conventional linear accelerator. Consequently, the EBT device can be practically used for human skin cancer treatment in the near future.

A Study on Dosimetric Characterization of Direct Yellow 12 Dye at High Radiation γ-Dose

  • Batool, Javaria;Shahid, Shaukat Ali;Ramiza, Ramiza;Akhtar, Nasim;Naz, Afshan;Yaseen, Maria;Ullah, Inam;Nadeem, Muhammad;Shakir, Imran
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2265-2268
    • /
    • 2012
  • Aqueous solution of oxygenated Direct yellow 12 dye has been evaluated spectrophotometrically as a possible gamma rays dosimeter. The neutral (pH-7), alkaline (pH-12.5) and acidic (pH-5.5) aqueous solution of the dye were prepared and exposed to various gamma doses. Absorption spectra of unirradiated and irradiated solutions were recorded at 400 nm peak. The increase in absorbance with the increase in irradiation dose was observed from 1 to 6 kGy. The stability response of the dye solution for different environmental conditions such as temperature (low & high), light and darkness were investigated during post irradiation storage for ten days. The dye solution showed high stability in darkness for the studied period. The optical density of the dye solution was found to be decreased at high temperature storage.

Dosimetric Characteristics of the KCCH Neutron Therapy Facility (원자력병원 중성자선치료기의 물리적특성)

  • Yoo Seong Yul;Noh Sung Woo;Chung Hyun Woo;Cho Chul Koo;Koh Kyoung Hwan;Bak Joo Shik;Eenmaa Juri
    • Radiation Oncology Journal
    • /
    • v.6 no.1
    • /
    • pp.85-91
    • /
    • 1988
  • For the physical characterization of neutron beam, dosimetric measurements had been performed to obtain physical data of KCCH cyclotron-produced neutrons for clinical use. The results are presented and compared with the data of other institutions from the literatures. The central axis percent depth dose, build-up curves and open and wedge isodose curve values are intermediate between that of a 4 and 6 MV X-rays. The build-up level of maximum dose was at 1.35cm and entrance dose was approximately $40\%$. Flatness of the beam was $9\%$ at Dmax and less $than{\pm}3\%$ at the depth of $80\%$ isodose line. Penumbra begond the $20\%$ line is wider than corresponding photon beam. The output factors ranged 0.894 for $6\times6cm$ field to 1.187 for $30\times30cm$ field. Gamma contamination of neutron beam was $4.9\%$ at 2 cm depth in $10\times10cm$ field.

  • PDF

Development of Phantom and Comparison Analysis for Performance Characteristics of MOSFET Dosimeter (MOSFET 선량계 특성분석을 위한 팬톰 개발 및 특성 비교)

  • Chung, Jin-Beom;Lee, Jeong-Woo;Kim, Yon-Lae;Lee, Doo-Hyun;Choi, Kyoung-Sik;Kim, Jae-Sung;Kim, In-Ah;Hong, Se-Mie;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.18 no.1
    • /
    • pp.48-54
    • /
    • 2007
  • This study is to develope a phantom for MOSFET (Metal Oxide Semiconductors Field Effect Transistors) dosimetry and compare the dosimetric properties of standard MOSFET and microMOSFET with the phantom. In this study, the developed phantom have two shape: one is the shape of semi-sphere with 10cm diameters and the other one is the flat slab of $30{\times}30cm$with 1 cm thickness. The slab phantom was used for calibration and characterization measurements of reproducibility, linearity and dose rate dependency. The semi-sphere phantom was used for angular and directional dependence on the types of MOSFETs. The measurements were conducted under $10{\times}10cm^2$ fields at 100cm SSD with 6MV photon of Clinac (21EX, Varian, USA). For calibration and reproducibility, five standard MOSFETS and microMOSFETs were repeatedly Irradiated by 200cGy five times. The average calibration factor was a range of $1.09{\pm}0.01{\sim}1.12{\pm}0.02mV/cGy$ for standard MOSFETS and $2.81{\pm}0.03{\sim}2.85{\pm}0.04 mV/cGy$ for microMOSFETs. The response of reproducibility in the two types of MOSFETS was found to be maximum 2% variation. Dose linearity was evaluated In the range of 5 to 600 cGy and showed good linear response with $R^2$ value of 0.997 and 0.999. The dose rate dependence of standard MOSFET and microMOSFET was within 1% for 200 cGy from 100 to 500MU/min. For linearity, reproducibility and calibration factor, two types of MOSFETS showed similar results. On the other hand, the standard MOSFET and microMOSFET were found to be remarkable difference in angular and directional dependence. The measured angular dependence of standard MOSFET and microMOSFET was also found to be the variation of 13%, 10% and standard deviation of ${\pm}4.4%,\;{\pm}2.1%$. The directional dependence was found to be the variation of 5%, 2% and standard deviation of ${\pm}2.1%,\;{\pm}1.5%$. Therefore, dose verification of radiation therapy used multidirectional X-ray beam treatments allows for better the use of microMOSFET which has a reduced angular and directional dependence than that of standard MOSFET.

  • PDF

Characteristic Evaluation of Optically Stimulated Luminescent Dosimeter (OSLD) for Dosimetry (광유도발광선량계(Optically Stimulated Luminescent Dosimeter)의 선량 특성에 관한 고찰)

  • Kim, Jeong-Mi;Jeon, Su-Dong;Back, Geum-Mun;Jo, Young-Pil;Yun, Hwa-Ryong;Kwon, Kyung-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.2
    • /
    • pp.123-129
    • /
    • 2010
  • Purpose: The purpose of this study was to evaluate dosimetric characteristics of Optically stimulated luminescent dosimeters (OSLD) for dosimetry Materials and Methods: InLight/OSL $NanoDot^{TM}$ dosimeters was used including $Inlight^{TM}MicroStar$ Reader, Solid Water Phantom, and Linear accelerator ($TRYLOGY^{(R)}$) OSLDs were placed at a Dmax in a solid water phantom and were irradiated with 100 cGy of 6 MV X-rays. Most irradiations were carried out using an SSD set up 100 cm, $10{\times}10\;cm^2$ field and 300 MU/min. The time dependence were measured at 10 minute intervals. The dose dependence were measured from 50 cGy to 600 cGy. The energy dependence was measured for nominal photon beam energies of 6, 15 MV and electron beam energies of 4-20 MeV. The dose rate dependence were also measured for dose rates of 100-1,000 MU/min. Finally, the PDD was measured by OSLDs and Ion-chamber. Results: The reproducibility of OSLD according to the Time flow was evaluated within ${\pm}2.5%$. The result of Linearity of OSLD, the dose was increased linearly up to about the 300 cGy and increased supralinearly above the 300 cGy. Energy and dose rate dependence of the response of OSL detectors were evaluated within ${\pm}2%$ and ${\pm}3%$. $PDD_{10}$ and PDD20 which were measured by OSLD was 66.7%, 38.4% and $PDD_{10}$ and $PDD_{20}$ which were measured by Ion-chamber was 66.6%, 38.3% Conclusion: As a result of analyzing characteration of OSLD, OSLD was evaluated within ${\pm}3%$ according to the change of the time, enregy and dose rate. The $PDD_{10}$ and $PDD_{20}$ are measured by OSLD and ion-chamber were evaluated within 0.3%. The OSL response is linear with a dose in the range 50~300 cGy. It was possible to repeat measurement many times and progress of the measurement of reading is easy. So the stability of the system and linear dose response relationship make it a good for dosimetry.

  • PDF

Dose Distribution and Characterization for Radiation Fields of Multileaf Collimateor System (방사선 입체조형치료용 다엽콜리메이터의 특성과 조직내 선량분포 측정)

  • Chu, Sung-Sil;Kim, Gwi-Eon
    • Radiation Oncology Journal
    • /
    • v.14 no.1
    • /
    • pp.77-85
    • /
    • 1996
  • Purpose : Multileaf collimator(MLC) is very suitable tool for conformal radio-therapy and commissioning measurements for a multileaf collimator installed on a dual energy accelerator with 6 and 10MV photons are required, For modeling the collimator with treament planning software, detailed dosimetric characterization of the multileaf collimator including the penumbra width, leaf transmission between leaf leakage and localization of the leaf ends and sides is an essential requirement. materials and Methods : Measurement of characteristic data of the MLC with 26 pair block leaves installed on CLINAC 2100C linear accelerator was performed. Low sensitive radiographic film(X-omatV) was used for the penumbra measurement and separate experiments using radiographic film and thermoluminescent dosimeters were performed to verify the dose distribution, Measured films were analized with a photodensitometer of WP700i scanner. Results : For 6 & 10 MV x-ray energies, approximately $2.0\%$ of photons incident on the multileaf collimator were transmitted and an additional $0.5\%$ leakage occurs between the leaves. Localizing the physical end of the leaves showed less than 1mm deviation from the $50\%$ decrement line and this difference is attributed to the curved shaped end on the leaves One side of a sin히e leaf corresponded to the $50\%$ decrement line, but the opposite face was aligned with a lower value. This difference is due to the tongue and groove used to decrease between leaf leakage. Alignment of the leaves to form a straight edge resulted larger penumbra at far position from isocenter as compare with divergent alloy blocks. When the MLC edge is stepped by sloping field, the isodose lines follow the leaf pattern and Produce scalloping isodose curves in tissue. The effective penumbra by 45 degree stepped MLC is about 10mm at 10cm depth for 6MV x-ray. The difference of effective penumbra in deep tissue between MLC and divergent alloy blocks is small (5mm). Conclusion : Using the characteristic data of MLC, the MLC has the clinlical acceptability and suitability for 3-D conformal radiotherapy except small field size.

  • PDF

Dosimetric Characterization of an Ion Chamber Matrix for Intensity Modulated Radiation Therapy Quality Assurance (세기변조방사선치료 선량분포 확인을 위한 2차원적 이온전리함 배열의 특성분석)

  • Lee, Jeong-Woo;Hong, Se-Mie;Kim, Yon-Lae;Choi, Kyoung-Sik;Jung, Jin-Beom;Lee, Doo-Hyun;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.17 no.3
    • /
    • pp.131-135
    • /
    • 2006
  • A commercial ion chamber matrix was examined the characteristics and its performance for radiotherapy qualify assurance. The device was the I'mRT 2D-MatriXX (Scanditronix-Wellhofer, Schwarzenbruck, Germany). The 2D-MatriXX device consists of a 1020 vented ion chamber array, arranged in $24{\times}24cm^2$ matrix. Each ion chamber has a volume of $0.08cm^3$, spacing of 0.762 cm and minimum sampling time of 20 ms. For the investigation of the characteristics, dose linearity, output factor, short-term reproducibility and dose rate dependency were tested. In the testing of dose linearity. It has shown a good signal linearity within 1% in the range of $1{\sim}800$cGy. Dose rate dependency was found to be lower than 0.4% (Range: 100-600 Mu/min) relative to a dose rate of 300 Mu/min as a reference. Output factors matched very well within 0.5% compared with commissioned beam data using a ionization chamber (CC01, Scanditronix-Wellhofer, Schwarzenbruck, Germany) in the range of field sizes $3{\times}3{\sim}24{\times}24cm^2$. Short-term reproducibility (6 times with a interval of 15 minute) was also shown a good agreement within 0.5%, when the temperature and the pressure were corrected by each time of measurement. in addition, we compared enhanced dynamic wedge (EDW, Varian, Palo Alto, USA) profiles from calculated values in the radiation planning system with those from measurements of the MatriXX. Furthermore, anon-uniform IMRT dose fluence was tested. All the comparison studies have shown good agreements. In this study, the MatriXX was evaluated as a reliable dosimeter, and it could be used as a simplistic and convenient tool for radiotherapy qualify assurance.

  • PDF