• Title/Summary/Keyword: dose error

Search Result 396, Processing Time 0.027 seconds

Quality Assurance of Intensity Modulated Radiation Therapy: Site-Specific Results of Eulji University Hospital (질환별 세기조절방사선치료의 정도관리: 을지대학병원 임상결과)

  • Kim, Sung-Jin;Lee, Mi-Jo;Youn, Seon-Min
    • Radiation Oncology Journal
    • /
    • v.29 no.2
    • /
    • pp.99-106
    • /
    • 2011
  • Purpose: To analyze our quality assurance (QA) data for intensity modulated radiation therapy (IMRT) according to treatment site and to possibly improve QA for IMRT in Hospital. Materials and Methods: We performed QA on 50 patients (head and neck, 28 patients; Breast, 14 patients; Pelvis, 8 patients) for IMRT. The calculated dose from RTP was compared with the measured value film, gamma index, and ionization chamber for dose measurement in each case. Results: The point dose measurement results in 45 of 50 patients showed good agreement with the calculation dose (${\pm}3%$). The largest error measured thus far has been 3.60%, with a mean of only -0.17% (SD, 2.25%). Each treatment site showed an error rate of -0.13% (SD, 1.93%) for head and neck cases, -0.26% (SD, 2.79%) for breast cases, and 0.24% (SD, 2.44%) for pelvis cases. The gamma index verified with the error rate of head and neck cases (6%), breast (10%), and pelvis (6%), which corresponded to a tolerance of 3 mm (3% for the head and neck, 2%, for the breast 1% for the pelvis, and 0% in the region where the isodose curve was greater than 90%. Conclusion: We recognize the cause of errors for each treatment site of IMRT QA and so we maximize our efforts to reduce error and increase accuracy.

Calculation of Dobe Distributions in Brachytherapy by Personal Microcomputer (Microcomputer를 이용한 근접조사 장치의 선량분포 계산)

  • Chu S. S.;Park C. Y.
    • Radiation Oncology Journal
    • /
    • v.2 no.1
    • /
    • pp.129-137
    • /
    • 1984
  • In brachytherapy, it is important to determine the positions of the radiation sources which are inserted into a patient and to estimate the dose resulting from the treatment. Calculation of the dose distribution throughout an implant is so laborious that it is rarely done by manual methods except for model cases. It is possible to calculate isodose distributions and tumor doses for individual patients by the use of a microcomputer. In this program, the dose rate and dose distributions are calculated by numerical integration of point source and the localization of radiation sources are obtained from two radiographs at right angles taken by a simulator developed for the treatment planning. By using microcomputer for brachytherapy, we obtained the result as following 1. Dose calculation and irradiation time for tumor could be calculated under one or five seconds after input data. 2. It was same value under$\pm2\%$ error between dose calculation by computer program and measurement dose. 3. It took about five minutes to reconstruct completely dose distribution for intracavitary irradiation. 4. Calculating by computer made remarkly reduction of dose errors compared with Quimby's calculation in interstitial radiation implantation. 5. It could calculate the biological isoffect dose for high and low dose rate activities.

  • PDF

Entrance Surface Dose according to Dose Calculation : Head and Wrist (피폭선량 산출을 통한 피부입사선량 계산: 머리 및 손목을 중심으로)

  • Sung, Ho-Jin;Han, Jae-Bok;Song, Jong-Nam;Choi, Nam-Gil
    • Journal of radiological science and technology
    • /
    • v.39 no.3
    • /
    • pp.305-312
    • /
    • 2016
  • This study were compared with the direct measurement and indirect dose methods through various dose calculation in head and wrist. And, the modified equation was proposed considering equipment type, setting conditions, tube voltage, inherent filter, added filter and its accompanied back scatter factor. As a result, it decreased the error of the direct measurement than the existing dose calculation. Accordingly, diagnostic radiography patient dose comparison would become easier and radiogrphic exposure control and evaluation will become more efficient. The study findings are expected to be useful in patients' effective dose rate evaluation and dose reduction.

Analysis of setup error at rectal cancer radiotherapy technique (직장암 방사선치료기법별 자세오차에 관한 분석)

  • Kim, Jeong-Ho;Bae, Seok-Hwan;Kim, Ki-Jin;Yu, Se-Jong;Kim, Jee-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6346-6352
    • /
    • 2013
  • Radiotherapy of rectal cancer requires a stabilized image but the movement of patients is almost unavoidable in radiotherapy. In this study, the setup error using the radiation treatment technique was compared according to the loading time and BMI(Body Mass Index) for 14 patients with rectal cancer. In addition, the variation of the dose by the average setup error was compared. Therefore, the technique of a selective standard was established. As a result, 3DCRT(3-Dimensional Radiation Therapy) and VMAT(Volumetric Modulated Arc Therapy) showed a similar time and error. In comparison, IMRT(Intensity Modulated Radiation Therapy) increased the time two fold and the error four fold. In BMI, a more pyknic patient showed a larger error for all techniques. Regarding the dose, IMRT and VMAT increased much more than 3DCRT in the average error at the small bowel. Therefore, 3DCRT of the short time will be applied to pyknic rectal cancer. Moreover, VMAT selects than IMRT in the overexposure of the small bowel.

Development of a dose estimation code for BNCT with GPU accelerated Monte Carlo and collapsed cone Convolution method

  • Lee, Chang-Min;Lee Hee-Seock
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1769-1780
    • /
    • 2022
  • A new method of dose calculation algorithm, called GPU-accelerated Monte Carlo and collapsed cone Convolution (GMCC) was developed to improve the calculation speed of BNCT treatment planning system. The GPU-accelerated Monte Carlo routine in GMCC is used to simulate the neutron transport over whole energy range and the Collapsed Cone Convolution method is to calculate the gamma dose. Other dose components due to alpha particles and protons, are calculated using the calculated neutron flux and reaction data. The mathematical principle and the algorithm architecture are introduced. The accuracy and performance of the GMCC were verified by comparing with the FLUKA results. A water phantom and a head CT voxel model were simulated. The neutron flux and the absorbed dose obtained by the GMCC were consistent well with the FLUKA results. In the case of head CT voxel model, the mean absolute percentage error for the neutron flux and the absorbed dose were 3.98% and 3.91%, respectively. The calculation speed of the absorbed dose by the GMCC was 56 times faster than the FLUKA code. It was verified that the GMCC could be a good candidate tool instead of the Monte Carlo method in the BNCT dose calculations.

Target Localization and Dose Delivery Verification used a Water Phantom in Stereotactic Radiosurgery (정위적 방사선 수술에서 물팬텀을 이용한 목표점 및 전달 선량확인)

  • Kang, Young-Nam;Lee, Dong-Jun;Kwon, Soo-Il;Kwon, Yang
    • Progress in Medical Physics
    • /
    • v.7 no.2
    • /
    • pp.19-28
    • /
    • 1996
  • It is important that the precise decision of the region and the accurate delivery of radiation dose required for treatment in the stereotactic radiosurgery. In this research, radiosurgery was carried with Leksell streotactic frame(LSF) which is especially developed water phantom to verify in experiment. Leksell Gamma Knife and LSF are used in radiosurgery is the spherical water phantom has the thickness of 2 mm, the radius of 160mm. The film for target localization and ionchamber for dose delivery was used in measurement instruments We compare the coordinate of target which is initialized by biplannar film with simple X-ray to the coordinate of film measured directly. The calculated dose by computer simulation and the measured dose by ionization chamber are compared. In this research, the target localization has the range ${\pm}$0.3mm for the acceptable error range and the absolute dose is :${\pm}$0.3mm for the acceptable error range. This research shows that the values measured by using the especially manufactured phantom are included the acceptable error range. Thus, this water phantom will be used continuously in the periodic quality assurance of Gamma Knife Unit and Leksell Stereotactic Frame.

  • PDF

Development of Radiation Dose Assessment Algorithm for Arbitrary Geometry Radiation Source Based on Point-kernel Method (Point-kernel 방법론 기반 임의 형태 방사선원에 대한 외부피폭 방사선량 평가 알고리즘 개발)

  • Ju Young Kim;Min Seong Kim;Ji Woo Kim;Kwang Pyo Kim
    • Journal of Radiation Industry
    • /
    • v.17 no.3
    • /
    • pp.275-282
    • /
    • 2023
  • Workers in nuclear power plants are likely to be exposed to radiation from various geometrical sources. In order to evaluate the exposure level, the point-kernel method can be utilized. In order to perform a dose assessment based on this method, the radiation source should be divided into point sources, and the number of divisions should be set by the evaluator. However, for the general public, there may be difficulties in selecting the appropriate number of divisions and performing an evaluation. Therefore, the purpose of this study is to develop an algorithm for dose assessment for arbitrary shaped sources based on the point-kernel method. For this purpose, the point-kernel method was analyzed and the main factors for the dose assessment were selected. Subsequently, based on the analyzed methodology, a dose assessment algorithm for arbitrary shaped sources was developed. Lastly, the developed algorithm was verified using Microshield. The dose assessment procedure of the developed algorithm consisted of 1) boundary space setting step, 2) source grid division step, 3) the set of point sources generation step, and 4) dose assessment step. In the boundary space setting step, the boundaries of the space occupied by the sources are set. In the grid division step, the boundary space is divided into several grids. In the set of point sources generation step, the coordinates of the point sources are set by considering the proportion of sources occupying each grid. Finally, in the dose assessment step, the results of the dose assessments for each point source are summed up to derive the dose rate. In order to verify the developed algorithm, the exposure scenario was established based on the standard exposure scenario presented by the American National Standards Institute. The results of the evaluation with the developed algorithm and Microshield were compare. The results of the evaluation with the developed algorithm showed a range of 1.99×10-1~9.74×10-1 μSv hr-1, depending on the distance and the error between the results of the developed algorithm and Microshield was about 0.48~6.93%. The error was attributed to the difference in the number of point sources and point source distribution between the developed algorithm and the Microshield. The results of this study can be utilized for external exposure radiation dose assessments based on the point-kernel method.

The Usefulness Assessment of Verifying Daily Output by Using CHECKMATE$^{TM}$ (CHECKMATE$^{TM}$를 이용한 일일 출력 검증의 유용성 평가)

  • Cho, Han-Sang;Nam, Sang-Soo;Park, Hae-Jin;Kim, Mi-Hwa;Park, An-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.23 no.1
    • /
    • pp.51-58
    • /
    • 2011
  • Purpose: In this study, we tried to check the usefulness of two Linear Accelerators, Clinac IX and 21EX (Varian, Palo Alto, CA), which are equipped in Ajou Medical Center. From 2008 to 2010, we evaluated the error range of Absolute Dose based on the daily output, which was measured by CHECKMATE$^{TM}$ (Sun Nuclear, Melbourne, FL). Materials and Methods: For Daily Q.A, photon beams of two linear accelerators, 21EX and IX (6 MV and 10 MV, respectively) were measured daily by using CHECKMATE$^{TM}$ just before the treatment began, while the absolute dose was measured biweekly by using water phantom. We analyzed the data of measured values from the daily Q.A and the absolute dose from 2008 to 2010 for 21EX, and from 2009 to 2010 for IX. We utilized Excel 2007 (Microsoft, USA) to evaluate Average, Standard deviation and Confidence level of the data. Furthermore, in order to check the measured values of CHECKMATE$^{TM}$ and the significance of absolute dose, each error value was compared and analyzed. Results: During the observation period, the output of two equipment's absolute dose increased in process of time and in both 6 MV and 10 MV, there was a similar increasing trend. In addition, the error rate of the measured value of CHECKMATE$^{TM}$ and the value of absolute dose were under 0.34, which means that there is a similarity relationship between the two measured values. After checking that the measured value of CHECKMATE$^{TM}$ increased, We measured the absolute dose to adjust that. When the error range was close to 2~3%, the number of changing the output was four for 21EX and three for IX. Conclusion: As a result of measuring and analyzing the daily output changes for two years by using CHECKMATE$^{TM}$, we could find that there is a significance between the output which we should obey during Q.A, and the measured value of absolute dose within the error tolerance of 2~3%. Thus, the use of CHECKMATE$^{TM}$ can be positively considered for more efficient and reliable daily output verification of linear accelerator. It can also be a good standard for other medical centers to understand the trends of linear accelerator and to refer to for the correction of each output.

  • PDF

A Comparison of Dose in Changed Technique Factor Using X-ray Imaging System (X-선 장치의 기술적 인자의 변화에 따른 선량 비교 평가)

  • Han, Dong-Kyoon;Ko, Shin-Gwan;Seon, Jong-Ryul;Yoon, Seok-Hwan;Jung, Jae-Eun
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.11 no.2
    • /
    • pp.101-107
    • /
    • 2009
  • With the recent development of diagnosis using radiation and increasing demand of the medical treatment, we need to minimize radiation exposure dose. So, This is the method which reduce patient dose by measuring surface dose of radiographic change factor and by comparing theoretical and actual dose, when we take an X-ray which is generally used. By changing the factor of kV, mAs, FSD, whose range is 60 to 120 kV, 20 to 100 mAs, 80 to 180 cm, we compared theoretical surface dose with actual surface dose calculated by the simple calculation program, Bit system, and NDD-M method As a result, when kV and mAs were higher, theoretical surface dose and actual surface dose were more increased. but the higher FSD was, the more decreased surface dose was. According to this, the error were measured about 0.1 to 0.2 mGy in low dose part and about 0.7 to 1.5 mGy in high dose part. Therefore, this shows that theoretical surface dose calculation method is more correct in low dose part than in high dose part. In conclusion, we will have to make constant efforts which can reduce patient and radiographer's exposure dose, studying methods which can predict patient's radiation exposure dose more exactly.

  • PDF

Dose Distribution of Rectum in the treatment of Uterine Cervical Cancer using Remote Afterloading System (RALS시행시 선원의 거리 이동및 직장선량에 관한 계산치와 측정치의 비교연구)

  • 김성규;신세원;김명세
    • Progress in Medical Physics
    • /
    • v.5 no.1
    • /
    • pp.67-74
    • /
    • 1994
  • Dose distribution of point source represents an inverse square law as the distance, Difference of measurement value and calculation value according to moving distance of radiation source show very large error in dose calculation of Brachytherapy. Therefore, in RALS of high dose rate, dose calculation have an important effect in treatment of uterine cervix cancer and recurrent rate. In this paper, authors measured moving distance of radiation source carrying out RALS. And we measured Rectum dose compared with calculationdose.

  • PDF