• 제목/요약/키워드: doped-titanium dioxide

검색결과 39건 처리시간 0.03초

습식 분무 열분해 방법으로 제조한 코발트 도핑된 티타늄 산화막의 표면 및 광학적 특성 (Surface and Optical Characteristics of Cobalt Dopped-titanium Oxide Film Fabricated by Water Spray Pyrolysis Technique)

  • 송호준;박영준
    • 한국재료학회지
    • /
    • 제15권3호
    • /
    • pp.209-215
    • /
    • 2005
  • Titanium dioxide films $(TiO_2)$ doped cobalt transition metal were prepared on titanium metal by water spray pyrolysis technique. Micro-morphology, crystalline structure, chemical composition and binding state of sample groups were evaluated using field emission scanning microscope(FE-SEM), X-ray diffractometer(XRD), Raman spectrometer, X-ray photoelectron spectrometer(XPS). $TiO_2$ films of rutile structure were predominately formed on all sample groups and $Ti_2O_3$ oxide was coexisted on the surface of cobalt doped-sample groups. The optical absorption peaks measured by using UV-VIS-NIR spectrophotometer were observed at specific wavelength region in sample groups doped cobalt ion. This result could be analyzed by introducing crystal field theory.

망간 도핑 이산화티탄 나노와이어를 혼입한 시멘트 모르타르의 특성 (Properties of Cement Mortar with Manganese Doped Titanium Dioxide Nano-Wires)

  • 이준철;호우야오롱
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.323-324
    • /
    • 2023
  • The properties of cement mortar mixed with manganese-doped titanium dioxide nanowires (TiO2(Mn)-NWs) were investigated in this study. The TiO2(Mn)-NWs were synthesized using solvo-thermal synthesis and electro-spinning techniques. The TiO2(Mn)-NWs at weights of 1%, 2%, and 3% of the cement were respectively mixed into the cement mortar. The results showed that as the amount of TiO2(Mn)-NWs increased, the flow value of the cement mortar was decreased and the setting time of cement mortar was accelerated. Moreover, as the amount of TiO2(Mn)-NWs increased, the compressive strength of cement mortar was increased and the efficiency of acetaldehyde removal was improved.

  • PDF

티타늄이 도핑된 이산화 바나듐의 열변색 특성에 관한 연구 (A Study on the Thermochromic properties of Ti-doped Vanadium Dioxide)

  • 박진욱;박성수;안병현;홍성수;이근대
    • 청정기술
    • /
    • 제21권4호
    • /
    • pp.235-240
    • /
    • 2015
  • 본 연구에서는 열변색 물성을 향상시키기 위한 방안의 하나로 0~0.5 at % 범위의 티타늄을 도핑한 이산화 바나듐(Ti-VO2)을 제조하였다. Ti-VO2 입자들은 바나딜설페이트, 중탄산암모늄, 사염화 티타늄 등을 사용하여 바나듐 화합물 전구체를 제조한 후 열분해법을 이용하여 제조하였다. 제조된 시료들의 결정 구조, 형상, 화학적 구조 및 열변색 특성은 X-선 회절분석기, 전계방사 주사전자현미경, X-선 광전자 분광기, 시차주사열량분석기, 자외선-가시광선-근적외선 분광기 등을 이용하여 분석하였다. 제조된 Ti-VO2 입자들은 단사 결정계를 지니고 있고, 또한 티타늄이 이산화 바나듐 결정내에 잘 도핑되어 있음을 확인할 수 있었다. 티타늄 도핑량이 증가함에 따라 최종 Ti-VO2 입자들의 크기가 작아지고 상전이 온도가 낮아졌으며, 또한 NIR switching efficiency는 증가하였다.

Development of Zinc-Doped Titanium Dioxide Coatings with Enhanced Biocompatibility for Biomedical Application

  • Minseo Yu;Yo Han Song;Mi-Kyung Han
    • 한국재료학회지
    • /
    • 제34권8호
    • /
    • pp.377-386
    • /
    • 2024
  • The surface of titanium (Ti) dental implants was modified by applying a zinc (Zn)-doped titanium dioxide (TiO2) coating. Initially, the Ti surfaces were etched with NaOH, followed by a hydrolysis co-condensation using tetrabutyl titanate (TBT, Ti(OC4H9)4) and zinc nitrate hexahydrate (Zn(NO3)2·6H2O), with ammonia water (NH3·H2O) acting as a hydroxide anion source. The morphology and chemical composition of the Zn-doped TiO2-coated Ti plates were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and scanning electron microscopy (SEM). Synthesis temperatures were carefully adjusted to produce anatase Zn-doped TiO2 nanoparticles with a bipyramidal structure and approximate sizes of 100 nm. Wettability tests and cell viability assays demonstrated the biomedical potential of these modified surfaces, which showed high biocompatibility with a survival rate of over 95 % (p < 0.05) and improved wettability. Corrosion resistance tests using potentiodynamic polarization reveal that Zn-TiO2-treated samples with an anatase crystal structure exhibited a lower corrosion current density and more noble corrosion potential compared to samples coated with a rutile structure. This method offers a scalable approach that could be adapted by the biomaterial industry to improve the functionality and longevity of various biomedical implants.

Photocatalysis of Low Concentration of Gaseous-Phase Benzene Using Visible-Light Irradiated N-doped and S-doped Titanium Dioxide

  • Jo, Wan-Kuen;Kim, Jong-Tae
    • Environmental Engineering Research
    • /
    • 제13권4호
    • /
    • pp.171-176
    • /
    • 2008
  • Studies on visible-light-driven photocatalysis of air pollutants at indoor air quality (IAQ) levels have been limited. Current study investigated visible-light derived photocatalysis with N-doped and S-doped titanium dioxide ($TiO_2$) for the control of benzene at indoor levels. Two preparation processes were employed for each of the two types of photocatalyst: urea-Degussa P-25 $TiO_2$ and titania-colloid methods for the N-doped $TiO_2$; and titanium isopropoxid- and tetraisopropoxide-thiourea methods for the S-doped $TiO_2$. Furthermore, two coating methods (EDTA- and acetylacetone-dissolving methods) were tested for both the N-doped and S-doped $TiO_2$. The two coating methods exhibited different photocatalytic degradation efficiency for the N-doped photocatalysts, whereas they did not exhibit any difference for the S-doped photocatalysts. In addition, the two doping processes showed different photocatalytic degradation efficiency for both the S-doped and N-doped photocatalysts. For both the N-doped and S-doped $TiO_2$, the photocatalytic oxidation (PCO) efficiency increased as the hydraulic diameter (HD) decreased. The degradation efficiency determined via a PCO system with visible-light induced $TiO_2$ was lower than that with UV-light induced unmodified $TiO_2$, which was obtained from previous studies. Nevertheless, it is noteworthy that for the photocatalytic annular reactor with the HD of 0.5 cm, PCO efficiency increased up to 52% for the N-doped $TiO_2$ and 60% for the S-doped $TiO_2$. Consequently, when combined with the advantage of visible light use over UV light use, it is suggested that with appropriate HD conditions, the visible-light-assisted photocatalytic systems can also become an important tool for improving IAQ.

Fe 도핑된 TiO2와 헥사데실트리메톡시실란를 이용한 셀프클리닝 섬유의 제조 및 평가 (Preparation and Evaluation of Self-cleaning Fabrics using Fe-doped TiO2 and Hexadecyltrimethoxysilane)

  • 문예진;조승빈;정의경;배진석
    • 한국염색가공학회지
    • /
    • 제32권3호
    • /
    • pp.158-166
    • /
    • 2020
  • Self-cleaning fabric is a fabric having a function of decotamination via photodecomposition of photocatalyst or wash-off of contaminants on the superhydrophobic surface. TiO2 is the main photocatalyst for this purpose, but it only functions under UV light which is only a little portion of sunlight, compared to visible light. In this regard, this study aims to investigate Fe-doped TiO2 for improved photodecomposition from visible light sensitization to apply self-cleaning finishing of PET fabrics. Moreover, the Fe-doped TiO2 treated PET fabric was further treated with hexadecyltrimethoxysilane to provide superhydrophobicity on the PET fabrics. As a result of this dual treatment, the prepared fabric exhibited excellent photodecomposition of methylene blue with 96.96% in 12h under sunlight and superhydrophobicity with water contact angle of 166.5° and roll-off angle of 7°. This suggested that the excellent self-cleaning functions can be privided to PET fabric via Fe-doped TiO2 and hexadecyltrimethoxysilane treatment.

Chemical Doping of $TiO_2$ with Nitrogen and Fluorine and Its Support Effect on Catalytic Activity of CO Oxidation

  • Chakravarthy, G. Kalyan;Kim, Sunmi;Kim, Sang Hoon;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.142.2-142.2
    • /
    • 2013
  • The effect of substrate on catalytic activity of CO oxidation with transition metal Platinum nanoparticles on doped and undoped TiO2 was investigated. Titanium dioxide was doped chemically with non-metal anions including nitrogen and fluorine. Undoped TiO2 was synthesized via simple conventional sol-gel route. Thin films of titania were developed by spin coating technique and the characterization techniques SEM, XRD, UV-Vis Absorption Spectroscopy and XPS were carried out to examine the morphology of films, crystal phase, crystallites, optical properties and elemental composition respectively. XPS analysis from doped TiO2 confirmed that the nitrogen site were interstitial whereas fluorine was doped into TiO2 lattice substitutionally. Catalytic activity systems of Pt/doped-TiO2 and Pt/undoped-TiO2 were fabricated to reveal the strong metal-support interaction effect during catalytic activity of CO oxidation reactions. By arc plasma deposition technique, platinum nanoparticles with mean size of 2.7 nm were deposited on the thin films of doped and undoped titanium dioxide. The CO oxidation was performed with 40 Torr CO and 100 Torr O2 with 620 Torr He carrier gas. Turn over frequency was observed two to three folds enhancement in case of Pt/doped TiO2 as compared to Pt/TiO2. The electronic excitation and the oxygen vacancies that were formed with the doping process were the plausible reasons for the enhancement of catalytic activity.

  • PDF

Bactericidal and wound disinfection efficacy of nanostructured titania

  • Azad, Abdul-Majeed;Aboelzahab, Asem;Goel, Vijay
    • Advances in materials Research
    • /
    • 제1권4호
    • /
    • pp.311-347
    • /
    • 2012
  • Infections are caused due to the infiltration of tissue or organ space by infectious bacterial agents, among which Staphylococcus aureus bacteria are clinically most relevant. While current treatment modalities are in general quite effective, several bacterial strains exhibit high resistance to them, leading to complications and additional surgeries, thereby increasing the patient morbidity rates. Titanium dioxide is a celebrated photoactive material and has been utilized extensively in antibacterial functions, making it a leading infection mitigating agent. In view of the property amelioration in materials via nanofication, free-standing titania nanofibers (pure and nominally doped) and nanocoatings (on Ti and Ti6Al4V implants) were fabricated and evaluated to assess their efficacy to mitigate the viability and growth of S. aureus upon brief (30 s) activation by a portable hand-held infrared laser. In order to gauge the effect of exposure and its correlation with the antibacterial activities, both isolated (only titania substrate) and simultaneous (substrate submerged in the bacterial suspension) activations were performed. The bactericidal efficacy of the IR-activated $TiO_2$ nanocoatings was also tested against E. coli biofilms. Toxicity study was conducted to assess any potential harm to the tissue cells in the presence of photoactivated materials. These investigations showed that the photoactivated titania nanofibers caused greater than 97% bacterial necrosis of S. aureus. In the case of titania-coated Ti-implant surrogates, the bactericidal efficacy exceeded 90% in the case of pre-activation and was 100% in the case of simultaneous-activation. In addition to their high bactericidal efficacy against S. aureus, the benignity of titania nanofibers and nanocoatings towards tissue cells during in-vivo exposure was also demonstrated, making them safe for use in implant devices.

M-Doped TiO2 (M=Co, Cr, Fe)의 제조 : 전자 밴드구조-(1) (Fabrication of M-Doped TiO2 (M=Co, Cr, Fe) : Its Electronic Band Structure-(1))

  • 배상원;김현규;지상민;장점석;정의덕;홍석준;이재성
    • 한국세라믹학회지
    • /
    • 제43권1호
    • /
    • pp.22-27
    • /
    • 2006
  • The electronic band structures of Metal-doped titanium dioxide, M-doped $TiO_2$ (M=Co, Cr, Fe), have been studied by using XRD, UV-vis diffuse reflectance spectrometer and FP-LAPW (Full-Potential Linearized Augmented-Plane-Wave) method. The UV-vis of M-doped $TiO_2$ (M=Co, Cr, Fe) showed two absorption edges; the main edge due to the titanium dioxide at 387 nm and a shoulder due to the doped metals at around 560 nm. The band gap energies of Co, Cr and Fe-doped $TiO_2$ calculated by FP-LAPW method were 2.6, 2.0, and 2.5 eV, respectively. The theoretically calculated band gap energy of $TiO_2$ by using FP-LAPW method was the same as experimental results. FP-LAPW method will be useful for fabrication and development of photo catalysts working under visible light.

Photodegradation of Volatile Organic Compound (VOC) Through Pure TiO2 and V-Doped TiO2 Coated Glasses

  • Moon, Jiyeon;Kim, Seonmin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.425.2-425.2
    • /
    • 2014
  • $TiO_2$ possesses great photocatalytic properties but absorbs only UV light owing to high band gap energy (Eg = 3.2 eV). By narrowing the band gap through doping a metal ion, the photocatalytic activity can be enhanced in condition of the light of a higher than 365 nm wavelength. Main purpose for this study is to evaluate the activities of metal doped $TiO_2$ for degrading the volatile organic compounds (VOCs); p-xylene is chosen in the VOC removal test. Vanadium is selected in this study because an ionic radius of vanadium is almost the same as titanium ion and vanadium can be easily doped into $TiO_2$. V-doped $TiO_2$ was synthesized by sol-gel methods and compared with pure $TiO_2$. Pure TiO2 powder and V-doped $TiO_2$ powder were coated on glasses by spray coating method. UV-Visible spectrophotometer was used for the measurement of the band gap changes. VOC concentration degradation level was tested with using various UV light sources in an enclosed chamber. Catalytic activities of prepared samples were evaluated based on the experimental results and compared with coated pure $TiO_2$ sample.

  • PDF