• 제목/요약/키워드: dope addition method

Search Result 5, Processing Time 0.018 seconds

Fabrication of silk nanofibril-embedded regenerated silk fibroin composite fiber by wet spinning

  • Chang Hyun, Bae;In Chul, Um
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.45 no.2
    • /
    • pp.70-77
    • /
    • 2022
  • Wet-spun regenerated silk fibroin (RSF) fibers have been extensively studied owing to their 1) useful properties as biomaterials, including good blood compatibility and cyto-compatibility; 2) the various methods available to control the structural characteristics and morphology of the fiber, and 3) the possibility of fabricating blended fibers and new material-embedded fibers. In this study, silk nanofibrils prepared using a new method were embedded in RSF to fabricate wet-spun silk nanofibril/RSF composite fibers. Up to 2% addition of silk nanofibril, the silk nanofibril/RSF dope solution showed slight shear thinning, and the G' and G" of the dope solution were similar. However, above 3% silk nanofibril content, the viscosity of the dope solution significantly increased. In addition, shear thinning was remarkably evident, and the G' of the dope solution was much higher than the G", indicating a very elastic state. As the silk nanofibril content was increased, the wet-spun silk nanofibril/RSF composite fiber became uneven, with a rough surface, and more beaded fibers were produced. Scanning electron microscopy observations revealed that the beaded fibers were attributed to the inhomogeneous dispersion and presence of agglomerates of the silk nanofibrils. As the silk nanofibril content and RSF concentration increased, the maximum draw ratio decreased, indicating the deterioration of the wet spinnability and post-drawing performance of silk nanofibril/RSF.

Effect of Far-Infrared Finishing on Brassiere Pad

  • Shin Jung-Sook
    • The International Journal of Costume Culture
    • /
    • v.8 no.2
    • /
    • pp.124-131
    • /
    • 2005
  • This study focused on the change of skin temperature by the emissivity and emission power of far-infrared for conformant far infrared effect to naked eyes. The study method is to manufacture the bra pad by each concentration on far-infrared materials of illite powder $(K,H_3O)AI_2(Si,Al)_4O_{10}(H_2O,OH)_2)$, liquid alumina ($Al_2O_3$), the extracted liquid from 29 kind of medical plants, then, measured change of skin temperature. Result are as follows. Far-infrared were emitted each $90.2\%,\;90.1\%,\;89.7\%$ from the illite powder, liquid alumina, extracted liquid from medical plants. When the testee weared the bra pad, the temperature of coated bra pad was $0.5^{\circ}C$ higher than the non finished bra pad. Washing fastness on far-infrared finishing was better dope addition method than coating method.

  • PDF

Preparation and Characterization of Bovine Serum Albumin-loaded Cationic Liposomes: Effect of Hydration Phase

  • Park, Se-Jin;Jeong, Ui-Hyeon;Lee, Ji-Woo;Park, Jeong-Sook
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.6
    • /
    • pp.353-356
    • /
    • 2010
  • Although liposomes have been applied as drug delivery systems in various fields, the usage was limited due to the low encapsulation efficiency compared to other carrier systems. Here, cationic liposomes were prepared by mixing 1,2-dioleoyl-3-trimethylammoniopropane (DOTAP) as a cationic lipid, 1,2-dioleoyl-sn-glycerol-phosphoethanolamine (DOPE) and cholesterol (CH), and the liposomes were hydrated by varying the aqueous phases such as phosphate-buffered saline (PBS), 5% dextrose, and 10% sucrose in order to improve the encapsulation efficiency of bovine serum albumin (BSA). The particle size and zeta potential were determined by dynamic light scattering method and in vitro release patterns were investigated by spectrophotometry. Particle size and zeta potential of liposomes were varied depending on the ratio of DOTAP/DOPE/CH in range of 270-350 nm and 0.8-9.7 mV, respectively. Moreover, the addition of polyethylene glycol (PEG) improved the encapsulation efficiency from 37% to 43% as well as reduced particle sizes of liposomes while the liposomes were hydrated in PBS. When the liposomes were hydrated with 10% sucrose, the encapsulation efficiency of BSA was higher than any other groups. Whereas PBS was used as hydration solution, lower encapsulation efficiency was obtained compared with other groups. More than 60% of BSA was released from the liposomes hydrated with 10% sucrose; thereafter another 20% of BSA was released. Therefore, release pattern of BSA from cationic liposomes was extended release in this study. From the results, cationic liposomes dispersed in 10% sucrose would be potential carrier with high encapsulation efficiency.

Controlling the Morphology of Polyvinylidene-co-hexafluoropropylene (PVDF-co-HFP) Membranes Via Phase Inversion Method (상전이법을 이용한 P(VDF-co-HFP) 분리막 구조제어)

  • Song, Ye Jin;Kim, Jong Hoo;Kim, Ye Som;Kim, Sang Deuk;Cho, Young Hoon;Park, Ho Sik;Nam, Seung Eun;Park, You In;Son, Eun Ho;Kim, Jeong F.
    • Membrane Journal
    • /
    • v.28 no.3
    • /
    • pp.187-195
    • /
    • 2018
  • In this work, the morphology of polyvinylidene-co-hexafluoropropylene (PVDF-co-HFP) membranes were systemically investigated using phase inversion technique, to target membrane contactor applications. As the presence of macrovoids degrade the mechanical integrity of the membranes and jeopardize the long-term stability of membrane contactor processes (e.g. wetting), a wide range of dope compositions and casting conditions was studied to eliminate the undesired macrovoids. The type of solvent had significant effect on the membrane morphology, and the observed morphology were correlated to the physical properties of the solvent and solvent-polymer interactions. In addition, to fabricate macrovoid-free structure, the effects of different coagulation temperatures, inclusion of additives, and addition of nonsolvents were investigated. Due to the slow crystallization rate of P(VDF-co-HFP) polymer, it was found that obtaining porous membrane without macrovoids is difficult using only nonsolvent-induced phase separation method (NIPS). However, combined other phase inversion methods such as evaporation-induced phase separation (EIPS) and vapor-induced phase separation (VIPS), the desired membrane morphology can be obtained without any macrovoids.

Functional Properties of Soy Protein Isolates Prepared from Defatted Soybean Meal (탈지대두박(脫脂大豆粕)에서 추출(抽出)한 분리대두단백(分離大豆蛋白)의 식품학적(食品學的) 성질(性質))

  • Byun, Si-Myung;Kim, Chul-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.123-130
    • /
    • 1977
  • A laboratory study was made to develop a simple and economic model method for the systematic determination of functional properties of 'Soy Protein Isolates (SPI)' prepared from defatted soybean meal. These are required to evaluate and to predict how SPI may behave in specific systems and such proteins can be used to simulate or replace conventional proteins. Data concerning the effects of pH, salt concentration, temperature, and protein concentration on the functional properties which include solubility, heat denaturation, gel forming capacity, emulsifying capacity, and foaming capacity are presented. The results are as follows: 1) The yield of SPI from defatted soybean meal increased to 83.9 % as the soybean meal was extracted with 0.02 N NaOH. 2) The suitable viscocity of a dope solution for spinning fiber was found to be 60 Poises by using syringe needle (0.3 mm) with 15 % SPI in 0.6 % NaOH. 3) Heat caused thickening and gelation in concentration of 8 % with a temperature threshold of $70^{\circ}C$. At $8{\sim}12\;%$ protein concentration, gel was formed within $10{\sim}30\;min$ at $70{\sim}100\;^{\circ}C$. It was, however, disrupted rapidly at $125\;^{\circ}C$ of overheat treatment. The gel was firm, resilient and self-supporting at protein concentration of 14 % and less susceptible to disruption of overheating. 4) The emulsifying capacity (EC) of SPI was correlated positively to the solubility of protein at ${\mu}=0$. At pH of the isoelectric point of SPI (pH 4.6), EC increased as concentration of sodium chloride increased. Using model system$(mixing\;speed:\;12,000\;r.p.m.,\;oil\;addition\;rate:\;0.9\;ml/sec,\;and\;temperature\;:\;20{\pm}1\;^{\circ}C)$, the maximum EC of SPI was found to be 47.2 ml of oil/100 mg protein, at the condition of pH 8.7 and ${\mu}=0.6$. The milk casein had greater EC than SPI at lower ionic strength while the EC of SPI was the same as milk casein at higher ionic strength. 5) The shaking test was used in determining the foam-ability of proteins. Progressively increasing SPI concentration up to 5 % indicated that the maximum protein concentration for foaming capacity was 2 %. Sucrose reduced foam expansion slightly but enhanced foam stability. The results of comparing milk casein and egg albumin were that foaming properties of SPI were the same as egg albumin, and better than milk casein, particularly in foam stability.

  • PDF