• Title/Summary/Keyword: dopant amount

Search Result 63, Processing Time 0.025 seconds

Quantitative Vapor Phase Exciplex Fluorescence Measurements at High Ambient Temperature and Pressure

  • Kim, Tongwoo;Jaal B. Ghandhi
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.157-167
    • /
    • 2003
  • The exciplex fluorescence technique with the TMPD (tetamethyl-Ρ-phenylene-diamine) / naphthalene dopant system was applied in a combustion-type constant-volume spray chamber. A detailed set of calibration experiments has been performed in order to quantify the TMPD fluorescence signal. It has been demonstrated that the TMPD fluorescence intensity was directly proportional to concentration, was independent of the chamber pressure, and was not sensitive to quenching by either water vapor or carbon dioxide. Using a dual heated-jet experiment, the temperature dependence of TMPD fluorescence up to 1000 K was measured. The temperature field in the spray images was determined using a simple mixing model, and an iterative solution method was used to determine the concentration and temperature field including the additional effects of the laser sheet extinction. The integrated fuel vapor concentration compared favorably with the measured amount of injected fuel when all of the liquid fuel had evaporated.

A Study on Organic Multithin Layer EL Devices (다층 유기 초박막 EL소자에 관한 연구)

  • Cho, S.R.;Kim, J.J.;Park, J.E.;Son, W.K.;Lim, K.J.;Park, S.G.;Lee, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1516-1518
    • /
    • 1997
  • Recently lots of study on EL have been performed by other researcher. Organic multilayer system of TPD/$Alq3$ and Rhodamine 101 perchrolate/Alq3/ was constructed on ITO and finally Al as cathodic electrode. The thickness of emitting layer was $150{\AA}$ and device was fabricated by changing amount of dopant. AFM image for each surface morphology and EL spectra using fluoromax-2 was investigated. Electrical and emission properties of EL device was dependent on deposition method and condition.

  • PDF

A Technique to Circumvent V-shaped Deconvolution Error for Time-dependent SRAM Margin Analyses

  • Somha, Worawit;Yamauchi, Hiroyuki;Yuyu, Ma
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.4
    • /
    • pp.216-225
    • /
    • 2013
  • This paper discusses the issues regarding an abnormal V-shaped error confronting algebraic-based deconvolution process. Deconvolution was applied to an analysis of the effects of the Random Telegraph Noise (RTN) and Random Dopant Fluctuation (RDF) on the overall SRAM margin variations. This paper proposes a technique to suppress the problematic phenomena in the algebraic-based RDF/RTN deconvolution process. The proposed technique can reduce its relative errors by $10^{10}$ to $10^{16}$ fold, which is a sufficient reduction for avoiding the abnormal ringing errors in the RTN deconvolution process. The proposed algebraic-based analyses allowed the following: (1) detection of the truncating point of the TD-MV distributions by the screening test, and (2) predicting the MV-shift-amount by the assisted circuit schemes needed to avoid the out of specs after shipment.

  • PDF

Ion and solvent transport during the redox reaction of Polypyrrole and poly(N-substituted pyrrole) films in aprotic solutions

  • Lee Hochun;Kwak Juhyoun
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.52-54
    • /
    • 1998
  • Polypyrrole (PPy), Poly(N-methyl Pyrrole) (PMPy) and Poly(N-phenyl Pyrrole) (PPhPy) films in acetonitrile (Af and propylene carbonate (PC) have been compared focusing on their different ion and solvent transport behaviors. During the redox reaction of PPy films, cation, anion, and solvent take part in mass transport. Whereas during the redox reaction of PMPy and PPhPy films, anion and solvent transport are dominant but cation transport is negligible. In addition, solvent transport occurs in the same direction with cation transport for PPy films. On the other hand, solvent transport occurs in the opposite direction to anion transport for PMPy films, and it changes its amount and direction with the kind of the dopant anion and the solvent used at electropolymerization for PPhPy films.

Examination of Diffusion Process for High-speed Avalanche Photodiode Fabrication

  • Ilgu Yun;Hyun, Kyujg-Sook;Kwon, Yong-Hwan;Pyun, Kwang-Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.11
    • /
    • pp.954-958
    • /
    • 2000
  • The characterization of zinc diffusion processes applied for high-speed avalanche photodiodes has been examined. The different diffusion process conditions for InP test structures were explored. The zinc diffusion profiles, such as the diffusion depth and the zinc dopant concentration, were examined using secondary ion mass spectrometry with varying the process variables and material parameters. It is observed that the diffusion profiles are severly impacted on the process parameters, such as the amount of Zn$_3$P$_2$ source and the diffusion time, as well as material parameters, such as doping concentration of diffusion layer. These results can be utilized for the high-speed avalanche photodiode fabrication.

  • PDF

Study of Zinc Diffusion Process for High-speed Avalanche Photodiode Fabrication

  • Ilgu Yun;Hyun, Kyung-Sook;Pyun, Kwang-Eui
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.731-734
    • /
    • 2000
  • The characterization of Zinc diffusion processes applied fur high-speed avalanche photodiodes has been examined. The different diffusion process conditions for InP test structures were explored. The Zinc diffusion profiles, such as the diffusion depth and the Zinc dopant concentration, were examined using secondary ion mass spectrometry with varying the process variables and material parameters. It is observed that the diffusion profiles are severely impacted on the process parameters, such as the amount of Zn$_3$P$_2$source and the diffusion time, as well as material parameters, such as doping concentration of diffusion layer. These results can be utilized for the high-speed avalanche photodiode fabrication.

  • PDF

Synergistic Effect on the Photocatalytic Degradation of 2-Chlorophenol Using $TiO_2$Thin Films Doped with Some Transition Metals in Water

  • Jeong, O Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.11
    • /
    • pp.1183-1191
    • /
    • 2001
  • The metallorganic chemical vapor deposition (MOCVD) method has been used to prepare TiO2 thin films for the degradation of hazardous organic compounds, such as 2-chlorophenol (2-CP). The effect of supporting materials and metal doping on the photocatalytic activity of TiO2 thin films also has been studied. TiO2 thin films were coated onto various supporting materials, including stainless steel cloth(SS), quartz glass tube (QGT), and silica gel (SG). Transition metals, such as Pd(II), Pt(IV), Nd(III) and Fe(III), were doped onto TiO2 thin film. The results indicate that Nd(Ⅲ) doping improves the photodegradation of 2-CP. Among all supporting materials studied, SS(37 ${\mu}m)$ appears to be the best support. An optimal amount of doping material at 1.0 percent (w/w) of TiO2-substrate thin film gives the best photodegration of 2-CP.

Control of carrier concentrations by addition of $B_{2}O_{3}$ in Si-doped vertical gradient freeze (VGF) GaAs single crystal growth (수직경사응고(VGF)법에 의한 Si 도핑 GaAs 단결정 성장시 $B_{2}O_{3}$ 첨가에 따른 캐리어 농도 변화)

  • Bae, So-Ik;Han, Chang-Woon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.2
    • /
    • pp.75-78
    • /
    • 2009
  • Si-doped GaAs single crystals were grown by vertical gradient freeze using PBN crucibles. The amount of oxide layer $B_{2}O_{3}$ in PBN crucible was changed($0{\sim}0.2wt%$) and measured the concentration of carriers. The segregation coefficients of Si in GaAs melt decreased rapidly from initial 0.1 to 0.01 as the amount of $B_{2}O_{3}$ increases. At the same time, concentration of carriers was shown to decrease. It is likely that the reaction between dopant Si and $B_{2}O_{3}$ in GaAs melt results in the reduction of Si dopants(donor) while increase in the amount of boron(acceptor). The thin layer of $B_{2}O_{3}$ glass in PBN crucible was proved to be a better way to reduce defect formation rather than the total amount of $B_{2}O_{3}$.

A Study on the Magnetic Properties of Ceramics Superconductors for Simpllified Testing System (간소화 시스템적용을 위한 자기특성)

  • Lee, Sang-Heon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.339-341
    • /
    • 2012
  • The high Tc superconductor of YBCO system with the nominal composition of precursor was prepared from mixed powders of $Y_2O_3$, $BaCO_3$, CuO and $TiO_2$ by the thermal pyrolysis method. The effect of $TiO_2$ doping to Y based ceramics superconductors fabricated by the thermal pyrolysis reaction, to investigate the effect of the dopant on the superconductivity. The voltage appearing across the field-cooled HTS sample increased with external magnetic field. The improvement of critical current property as well as the mechanical property is important for the application. The improvement of the critical current can be achieved by forming the nano size defect working as a flux pining center inside the superconductor. We simply added $TiO_2$ to starting materials to dope $TiO_2$ and observed an increase in the trapped field and the critical current density up to at least 5 wt % $TiO_2$. The $TiO_2$ was converted to fine $BaTiO_3$ particles which were trapped in YBCO matrix during the sintering process. We observed a peak effect of Jc that can be attributed to $TiO_2$ doping and results suggest that introducing a proper amount of pinning centers can significantly enhance current density.

Characteristics of polycrystalline 3C-SiC micro resonators with doping concentrations (도핑량에 따른 다결정 3C-SiC 마이크로 공진기의 특성)

  • Hung, Mai Phi;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.131-131
    • /
    • 2009
  • This paper describes the fabrication and characteristics of polycrystalline (poly) 3C-SiC microresonators with $3{\times}10^{17}{\sim}1{\times}10^{19}cm^{-3}$ in-situ N-doping concentrations. In this work, the crystallinity, carrier concentration and surface morphology of the grown thin films were evaluated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The 1.2 ${\mu}m$ thick cantilvers and the 0.4 ${\mu}m$ thick doubly-clamped beam microresonators with various lengths were implemented using in-situ doping poly 3C-SiC thin films. The characteristics of the poly 3C-SiC microresonators were evaluated using quartz and a laser vibrometer under vacuum at room temperature. The resonant frequencies of the SiC microresonators decreased with doping concentrations owing to the reduction of the Young's modulus of the poly 3C-SiC thin films. It was confirmed that the resonant frequencies of the poly 3C-SiC microresonators are controllable by adjusting the doping concentrations.

  • PDF