Control of carrier concentrations by addition of $B_{2}O_{3}$ in Si-doped vertical gradient freeze (VGF) GaAs single crystal growth

수직경사응고(VGF)법에 의한 Si 도핑 GaAs 단결정 성장시 $B_{2}O_{3}$ 첨가에 따른 캐리어 농도 변화

  • Published : 2009.04.30

Abstract

Si-doped GaAs single crystals were grown by vertical gradient freeze using PBN crucibles. The amount of oxide layer $B_{2}O_{3}$ in PBN crucible was changed($0{\sim}0.2wt%$) and measured the concentration of carriers. The segregation coefficients of Si in GaAs melt decreased rapidly from initial 0.1 to 0.01 as the amount of $B_{2}O_{3}$ increases. At the same time, concentration of carriers was shown to decrease. It is likely that the reaction between dopant Si and $B_{2}O_{3}$ in GaAs melt results in the reduction of Si dopants(donor) while increase in the amount of boron(acceptor). The thin layer of $B_{2}O_{3}$ glass in PBN crucible was proved to be a better way to reduce defect formation rather than the total amount of $B_{2}O_{3}$.

PBN 도가니를 이용하여 Si이 도핑된 GaAs 단결정을 수직경사 응고법으로 성장시켰다. PBN 도가니에 산화막인 $B_{2}O_{3}$의 양을 $0{\sim}0.2wt%$ 범위에서 변화시키면서, 성장 후 캐리어 농도를 측정하였다. $B_{2}O_{3}$ 첨가량이 증가함에 따라, 초기 0.1 정도의 Si 도판트의 편석계수는 0.01 부근까지 급격히 감소하고, 동시에 캐리어 농도도 감소하는 것을 알 수 있었다. 이는 성장도중 도판트인 Si이 $B_{2}O_{3}$과 반응하며 도너인 Si 양을 감소시키며, 동시에 억셉터인 B 양을 증가시키기 때문으로 보인다. 한편 PBN 도가니 내면에 얇은 유리질의 $B_{2}O_{3}$층 형성이 용이한 고온 산화막 처리가 결함감소에 효과적임을 확인하였다.

Keywords

References

  1. W.A. Gault, E.M. Monberg and J.E. Clemans, "A novel application of the vertical gradient freeze method to the growth of high quality III-V crystals", J. Crystal Growth 74 (1986) 491 https://doi.org/10.1016/0022-0248(86)90194-6
  2. A.N. Gulluoglu and C.T. Tsai, "Dislocation generation in GaAs crystals grown by the vertical gradient freeze method", J. Materials Processing Technology 102 (2000) 179 https://doi.org/10.1016/S0924-0136(00)00468-4
  3. Amon, J. Hartwig, W. Ludwig and G. Muller, "Analysis of types of residual dislocations in the VGF growth of GaAs with extremely low dislocation density $(EPD << 1000cm^{-2})$", J. Crystal Growth 198/199 (1999) 367 https://doi.org/10.1016/S0022-0248(98)01219-6
  4. E. Buhrig, C. Frank, C. Hannig and B. Hoffmann, "Growth and properties of semi-insulating VGF-GaAs", Materials Science and Engineering B 44 (1997) 248 https://doi.org/10.1016/S0921-5107(97)80007-4
  5. J. Amon, P. Berwian and G. Muller, "Computer-assisted growth of low-EPD GaAs with 3'' diameter by the vertical gradient-freeze technique", J. Crystal Growth 198/199 (1999) 361 https://doi.org/10.1016/S0022-0248(98)01220-2
  6. L. Fischer, U. Lambert, G. Nagel, H. Rufer and E. Tomzig, "Influence of pyrolytic boron nitride crucibles on GaAs crystal growth process and crystal properties", J. Crystal Growth 153 (1995) 90 https://doi.org/10.1016/0022-0248(95)00209-X
  7. S.-H. Hahn, H.-T. Chung, Y.-K. Kim and J.-K. Yoon, "The effect of the system factors on the shape of the S/L interface in GaAs single crystal grown by VGF method", J. Korean Association of Crystal Growth 4[1] (1994) 33
  8. A. Flat, "Silicon incorporation anomaly in LEC grown GaAs", J. Crystal Growth 109 (1991) 224 https://doi.org/10.1016/0022-0248(91)90182-5
  9. I.C. Bassignana, D.A. Macquistan, G.C. Hillier, R. Streater, D. Beckett, A. Majeed and C. Miner, "Variation in the lattice parameter and crystal quality of commercially available Si-doped GaAs substrates", J. Crystal Growth 178 (1997) 445 https://doi.org/10.1016/S0022-0248(97)00009-2
  10. C. Hannig, G. Schwichtenberg, E. Buhrig and G. Gartner, "Study of silicon-doped VGF-GaAs by DSL-etching and LVM spectroscopy and the influence of B2O3 coating", Materials Science and Engineering B66 (1999) 97 https://doi.org/10.1016/S0921-5107(99)00092-6
  11. K. Hashio, S. Sawada, M. Tatsumi, K. Fujita and S. Akai, "Low dislocation density Si-doped GaAs single crystal grown by the vapor-pressure-controlled Czochralski method", J. Crystal Growth 173 (1997) 33 https://doi.org/10.1016/S0022-0248(96)00785-3
  12. P.D. Greene “Growth of GaAs ingots with high free electron concentrations”, J. Crystal Growth 50 (1980) 612 https://doi.org/10.1016/0022-0248(80)90004-4