• Title/Summary/Keyword: dopaminergic

Search Result 337, Processing Time 0.034 seconds

Regulation of BDNF release in dopaminergic neurons

  • Jeon, Hong-Seong
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.743-746
    • /
    • 2003
  • The major pathological lesion in Parkinson's disease(PD) is selective degeneration and loss of pigmented dopaminergic neurons in substantia nigra (SN). Although the initial cause and subsequent molecular signaling mechanisms leading to the dopaminergic cell death underlying the PD process is elusive, the potent neurotrophic factors (NTFs), brain derived neurotrophic factor (BDNF) and glial cell line derived neurotrophic factor (GDNF), are known to exert dopaminergic neuroprotection both in vivo and in vitro models of PD employing the neurotoxin, MPTP. BDNF and its receptor, trkB are expressed in SN dopaminergic neurons and their innervation target. Thus, neurotrophins may have autocrine, paracrine and retrograde transport effects on the SN dopaminergic neurons. This study determined the BDNF secretion from SN dopaminergic neurons by ELISA. Regulation of BDNF synthesis/release and changes in signaling pathways are monitored in the presence of free radical donor, NO donor and mitochondrial inhibitors. Also, this study shows that BDNF is able to promote survival and phenotypic differentiation of SN dopaminergic neurons in culture and protect them against MPTP-induced neurotoxicity via MAP kinase pathway.

  • PDF

Effects of dopaminergic receptor stimulation on Mg2+ regulation in the rat heart and isolated ventricular myocytes (흰쥐의 심장과 심근세포에서 dopaminergic 수용체 자극이 Mg2+ 조절에 미치는 영향)

  • Kang, Hyung-sub;Kim, Jong-shick;Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.3
    • /
    • pp.463-471
    • /
    • 1999
  • Magnesium($Mg^{2+}$) is one of the most abundant intracellular divalent cation. Although recent studies demonstrate that adrenergic receptor stimulation evokes marked changes in $Mg^{2+}$ homeostasis, the regulation of $Mg^{2+}$ by dopaminergic receptor stimulation is not yet known. In this work, we used dopaminergic agents to identify which type(s) of receptors were involved in the mobilization of $Mg^{2+}$ by dopaminergic receptor stimulation in the perfused rat hearts, isolated myocytes and circulating blood. The $Mg^{2+}$ content was measured by atomic absorbance spectrophotometry. Dopamine(DA), apomorphine(APO) and pergolide stimulated $Mg^{2+}$ efflux in the perfused rat hearts and these effects were inhibited by haloperidol or fluphenazine, nonselective dopaminergic antagonists. SKF38393, a selective doparminergic agonist, increased $Mg^{2+}$ efflux from the perfused hearts in dose dependant manners and SKF38393-induced $Mg^{2+}$ efflux was blocked by haloperidol. However, dopaminergic agonists-induced $Mg^{2+}$ efflux was potentiated in the presence of sulpiride or eticlopride, $D_2$-selective antagonist, from the perfused hearts. This increase of $Mg^{2+}$ efflux was blocked by haloperidol or imipramine. DA or pergolide increased in circulating $Mg^{2+}$ from blood. By contrast, PPHT stimulated $Mg^{2+}$ influx(a decrease in efflux) from the perfused hearts and circulating blood. PPHT-induced $Mg^{2+}$ influx was blocked by fluphenazine in the perfused hearts. DA-stimulated $Mg^{2+}$ efflux was inhibited by dopaminergic antagoinst in the isolated myocytes. In conclusion, the flux of $Mg^{2+}$ is modulated by DA receptor activation in the rat hearts. The efflux of $Mg^{2+}$ can be increased by $D_1$-receptor stimulation and decreased by $D_2$-receptor stimulation, respectively.

  • PDF

Imaging of Dopaminergic System in Movement Disorders (이상운동질환에서의 도파민 신경계 영상)

  • Kim, Yu-Kyeong;Kim, Sang-Eun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.132-140
    • /
    • 2007
  • Parkinson's disease is a common neurodegenerative disorder that is mainly caused by dopaminergic neuron loss in the substantia nigra. Several radiopharmaceutics have been developed to evaluate the integrity of dopaminergic neuronal system. In vivo PET and SPECT imaging of presynaptic dopamine imaing are already applied to Parkinson's disease and other parkinsonism, and can demonstrate the dopaminergic dysfunction. This review summarized the use of the presynaptic dopaminergic imaging in PD as biomarkers in evaluation of disease progression as well as in diagnosis of PD.

Increased Slc6a4 Expression Associated with Decreased Dopaminergic Neurons in an MPTP Induced Parkinsonism Mouse Model (파킨슨병 동물 모델에서 도파민세포의 감소와 관련된 Slc6a4 발현의 증가)

  • Yeo, Sujung
    • Korean Journal of Acupuncture
    • /
    • v.38 no.3
    • /
    • pp.133-139
    • /
    • 2021
  • Objectives : Parkinson's disease is a neurodegenerative disease caused by a decrease in the dopaminergic neurons in the substantia nigra. The abnormal expression of solute carrier family 6 member 4 (Slc6a4) has been reported in patients with Parkinson's disease. Methods : In this study, we used MPTP to examine the changes in the expression of Slc6a4 in the brain of mice with Parkinson's disease and investigate its effect on dopaminergic neuronal cell death. Results : In the examination of the Slc6a4 expression in the substantia nigra of MPTP-treated mice for 4 weeks. The gene expression was increased compared to the normal group. To investigate the relationship between Slc6a4 and dopaminergic neurons, we performed a study using siRNA of Slc6a4 in the dopaminergic neuronal cell line SH-SY5Y. Using the siRNA of Slc6a4 to evaluate gene expression, it revealed that the tyrosine hydroxylase (TH) expression increases when Slc6a4 decreases. Moreover, this confirms its effects on the dopaminergic neurons. Additionally, through the evaluation of factors related to apoptosis, in particular, it was established that the value of bax/bcl2 decreased and was affected. These results suggest that a decreased Slc6a4 expression induces an increase in TH expression, providing a mechanism of action for dopaminergic neurons regulated by Slc6a4 expression. Conclusions : Slc6a4 is deemed to be involved in the regulation of dopaminergic neurons, suggesting that an increased Slc6a4 expression induced by MPTP may influence a reduction of dopaminergic neurons.

Inhibitory Effects of EGCG on the Dopaminergic Neurons

  • Heo, Tag;Jang, Su-Jeong;Kim, Song-Hee;Jeong, Han-Seong;Park, Jong-Seong
    • Biomedical Science Letters
    • /
    • v.15 no.2
    • /
    • pp.127-133
    • /
    • 2009
  • This study was designed to investigate the effects of high concentration of (-)-epigallocatechin-3-gallate(EGCG) on the neuronal activity of rat substantia nigra dopaminergic neurons. Sprague-Dawley rats aged 14 to 16 days were decapitated under ether anesthesia. After treatment with pronase and thermolysin, the dissociated dopaminergic neurons were transferred into a chamber on an inverted microscope. Spontaneous action potentials and potassium currents were recorded by standard patch-clamp techniques under current and voltage-clamp modes respectively. 18 dopaminergic neurons(80%) revealed inhibitory responses to 40 and 100 ${\mu}M$ of EGCG and 4 neurons(20%) did not respond to EGCG. The spike frequency and resting membrane potential of these cells were decreased by EGCG. The amplitude of afterhyperpolarization was increased by EGCG. Whole potassium currents of dopaminergic neurons were increased by EGCG(n=10). These experimental results suggest that high concentration EGCG decreases the neuronal activity of the dopaminergic neurons by altering the resting membrane potential and afterhyperpolarization.

  • PDF

Effects of Dopaminergic Drugs on the Mast Cell Degranulation and Nitric Oxide Generation in RAW 264.7 Cells

  • Seol, Il-Woong;Kuo, Na-Youn;Kim, Kyeong-Man
    • Archives of Pharmacal Research
    • /
    • v.27 no.1
    • /
    • pp.94-98
    • /
    • 2004
  • Effects of dopaminergic drugs on the degranulation of mast cells (RBL-2H3 cells) and the nitric oxide production from macrophage cells (RAW 264.7) were studied. Among the dopaminergic agonists and antagonists tested, bromocriptine, 7-OH-DPAT, haloperidol, and clozapine showed potent inhibitions of mast cell degranualtion ($IC_{50} value, 5 \mu$ M). However, these dopaminergic agents did not affect the tyrosine phosphorylations of the signaling components of the high affinity IgE receptor ($Fc\varepsilonRI$), such as Syk, $PLC\gamma1$, and $PLC\gamma2$.; This suggested that these signaling components were not involved in the inhibition of the mast cell degranulation by these compounds. On the other hand, dopamine, bromocriptine, 7-OH-DAPT, and haloperidol markedly inhibited the nitric oxide production from RAW 264.7 cells ($IC_{50}$ values, 10-20$\mu$M). Bromocriptine, a dopamine agonist that is routinely used for the treatment of Parkinsons disease, inhibited the expression of the inducible nitric oxide synthase at an early stage of the LPS-induced protein expression in a dose-dependent manner. The results suggested that these dopaminergic agents, when used for the treatment of dopamine receptors-related diseases, such as Schizophrenia or Parkinsons disease, might have additional beneficial effects.

Role of tetrahydrobiopterin in dopaminergic cell death: Relevance to Parkinson's disease

  • Choi, Hyun-Jin;Hwang, On-You
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2005.04a
    • /
    • pp.53-60
    • /
    • 2005
  • Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting $1\%$ of the population above the age of 65 and is characterized by a selective loss of dopaminergic neurons in the substantia nigra pars compacta. Although the underlying cause of dopaminergic cell death or the mechanism by which these cells degenerate is still not clearly understood, oxidative stress, mitochondrial dysfunction, and protein misfolding are thought to play important roles in the dopaminergic degeneration in PD. Tetrahydrobiopterin (BH4) is synthesized exclusively in the monoaminergic, including dopaminergic, cells and serves as an endogenous and obligatory cofactor for syntheses of the potential oxidative stressors dopamine and nitric oxide. In addition to its contribution toward the syntheses of these two potentially toxic molecules, BH4 itself can directly generate oxidative stress. BH4 undergoes oxidation during the hydroxylation reaction as well as nonenzymatic autooxidation to produce hydrogen peroxide and superoxide radical. We have previously suggested BH4 as an endogenous molecule responsible for the dopaminergic neurodegeneration. BH4 exerts selective toxicity to dopamine-producing cells via generation of oxidative stress, mitochondrial dysfunction, and apoptosis. BH4 also induces morphological, biochemical, and behavioral characteristics associated with PD in vivo. BH4 as well as enzyme activity and gene expression of GTP cyclohydrolase I, the rate-limiting enzyme in BH4 synthesis pathway, are readily upregulated by cellular changes such as calcium influx and by various stimuli including stress situations. This points to the possibility that cellular availability of BH4 might be increased in aberrant conditions, leading to increased extracellular BH4 subsequent degeneration. The fact that BH4 is specifically and endogenously synthesized in dopaminergic cells, Is readily upregulated, and generates oxidative stress-related cell death provides physical relevance of this molecule as an attractive candidate with which to explain the mechanism of pathogenesis of PD.

  • PDF

Anti-parkinsonian effect of Cyperi Rhizoma via inhibition of neuroinflammatory action (향부자(香附子)의 염증 억제 작용을 통한 항파킨슨 효과)

  • Kim, Hyo Geun;Sim, Yeomoon;Oh, Myung Sook
    • The Korea Journal of Herbology
    • /
    • v.28 no.5
    • /
    • pp.21-28
    • /
    • 2013
  • Objectives : The aim of this study was to investigate the neuroprotective effects and mechanisms of Cyperi Rhizoma extracts (CRE) using in vitro and in vivo models of Parkinson's disease (PD). Methods : We evaluated the neuroprotective effect of CRE against 1-methyl-4-phenylpyridinium (MPP+) toxicity using tyrosine hydroxylase immunohistochemistry (IHC) in primary rat mesencephalic dopaminergic neurons. In addition, the effect of CRE was evaluated in mice PD model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). For evaluations, C57bl/6 mice were orally treated with CRE 50 mg/kg for 5 days and were injected intraperitoneally with MPTP (20 mg/kg) at 2 h intervals on the last day. To identify the CRE affects on MPTP-induced neuronal loss of dopaminergic neurons in substantia nigra pars compacta (SNpc) and striatum of mice, the behavioral tests and IHC analysis were carried out. Also, we conducted nitric oxide (NO) and tumor necrosis factor-alpha (TNF-${\alpha}$) assay in dopaminergic neurons and IHC using glial markers in SNpc of mice to assess the anti-inflammation effects. Results : In primary mesencephalic culture system, CRE protected dopaminergic cells against $10{\mu}M$ MPP+-induced toxicity at 0.2 and $1.0{\mu}g/mL$. In the behavior tests, CRE treated group showed improved motor deteriorations than those in the MPTP only treated group. CRE significantly protected striatal dopaminergic damage from MPTP-induced neurotoxicity in mice. Moreover, CRE inhibited productions of NO and TNF-${\alpha}$ in dopaminergic culture system and activation of astrocyte and microglia in SNpc of the mice. Conclusion : We concluded that CRE shows anti-parkinsonian effect by protecting dopaminergic neurons against MPP+/MPTP toxicities through anti-inflammatory actions.

Roles of Dopaminergic $D_1\;and\;D_2$ Receptors in Catecholamine Release from the Rat Adrenal Medulla

  • Baek, Young-Joo;Seo, Yoo-Seong;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.1
    • /
    • pp.13-23
    • /
    • 2008
  • The aim of the present study was designed to establish comparatively the inhibitory effects of $D_1$-like and $D_2$-like dopaminergic receptor agonists, SKF81297 and R(-)-TNPA on the release of catecholamines (CA) evoked by cholinergic stimulation and membrane depolarization from the isolated perfused model of the rat adrenal medulla. SKF81297 $(30{\mu}M)$ and R-(-)-TNPA $(30{\mu}M)$ perfused into an adrenal vein for 60 min, produced great inhibition in the CA secretory responses evoked by ACh $(5.32{\times}10^{-3}\;M)$, DMPP $(10^{-4}\;M)$, McN-A-343 $(10^{-4}\;M)$, high $K^+$ $(5.6{\times}10^{-2}\;M)$, Bay-K-8644 $(10{\mu}M)$, and cyclopiazonic acid $(10{\mu}M)$, respectively. For the release of CA evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid, the following rank order of inhibitory potency was obtained: SKF81297>R-(-)-TNPA. However, R(+)-SCH23390, a selectve $D_1$-like dopaminergic receptor antagonist, and S(-)-raclopride, a selectve $D_2$-like dopaminergic receptor antagonist, enhanced the CA secretory responses evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid only for $0{\sim}4$ min. The rank order for the enhancement of CA release evoked by high $K^+$, McN-A-343 and cyclopiazonic acid was R(+)-SCH23390>S(-)-raclopride. Also, the rank order for ACh, DMPP and Bay-K-8644 was S(-)-raclopride > R(+)-SCH23390. Taken together, these results demonstrate that both SKF81297 and R-(-)-TNPA inhibit the CA release evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors and the membrane depolarization from the isolated perfused rat adrenal gland without affecting the basal release, respectively, but both R(+)-SCH23390 and S(-)-raclopride facilitate the CA release evoked by them. It seems likely that the inhibitory effects of SKF81297 and R-(-)-TNPA are mediated by the activation of $D_1$-like and $D_2$-like dopaminergic receptors located on the rat adrenomedullary chromaffin cells, respectively, whereas the facilitatory effects of R(+)-SCH23390 and S(-)-raclopride are mediated by the blockade of $D_1$-like and $D_2$-like dopaminergic receptors, respectively: this action is possibly associated with extra- and intracellular calcium mobilization. Based on these results, it is thought that the presence of dopaminergic $D_1$ receptors may play an important role in regulation of the rat adrenomedullary CA secretion, in addition to well-known dopaminergic $D_2$ receptors.

Effect of Acupuncture on 6-Hydroxydopamine-induced Nigrostriatal Dopaminergic Neuronal Cell Death in Rats

  • Kim, Yeung-Kee;Song, Yun-Kyung;Lim, Hyung-Ho
    • The Journal of Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.98-107
    • /
    • 2005
  • Objectives: Acupuncture treatment has been clinically used for functional recovery in Parkinson's disease. In the present study, we investigated the effect of acupuncture at Zusanli (ST36) on nigrostriatal dopaminergic neuronal cell death in rats. Methods: A Parkinson's disease model was induced by the unilateral injection of 6-hydroxydopamine (6-OHDA) into the striatum. Acupuncture treatment was performed at Zusanli (ST36) and at the hip, as a non-acupoint, once a day for 14 days. Two weeks after 6-0HDA injection, an apomorphine-induced rotational behavior test showed significant rotational asymmetry in rats with Parkinson's disease. Immunostaining for tyrosine hydroxylase demonstrated a dopaminergic neuronal loss in the substantia nigra and dopaminergic fiber loss in the striatum. Results: Acupuncture at the ST36 acupoint significantly inhibited rotational asymmetry in rats with Parkinson's disease, and also protected against 6-OHDA-induced nigrostriatal dopaminergic neuronal loss. These effects of acupuncture were not observed for non-acupoint acupuncture. Conclusions: The present study shows that acupuncture treatment, especially at the ST36 acupoint, can be used as a useful strategy for the treatment of Parkinson's disease.

  • PDF