DOI QR코드

DOI QR Code

Coadministration of 6-Shogaol and Levodopa Alleviates Parkinson's Disease-Related Pathology in Mice

  • Jin Hee Kim (Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University) ;
  • Jin Se Kim (Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University) ;
  • In Gyoung Ju (Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University) ;
  • Eugene Huh (Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University) ;
  • Yujin Choi (Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University) ;
  • Seungmin Lee (Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University) ;
  • Jun-Young Cho (Department of Fundamental Pharmaceutical Science, Kyung Hee University) ;
  • Boyoung Y. Park (Department of Fundamental Pharmaceutical Science, Kyung Hee University) ;
  • Myung Sook Oh (Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University)
  • Received : 2024.05.10
  • Accepted : 2024.06.04
  • Published : 2024.09.01

Abstract

Parkinson's disease (PD) is a neurodegenerative disease caused by the death of dopaminergic neurons in the nigrostriatal pathway, leading to motor and non-motor dysfunctions, such as depression, olfactory dysfunction, and memory impairment. Although levodopa (L-dopa) has been the gold standard PD treatment for decades, it only relieves motor symptoms and has no effect on non-motor symptoms or disease progression. Prior studies have reported that 6-shogaol, the active ingredient in ginger, exerts a protective effect on dopaminergic neurons by suppressing neuroinflammation in PD mice. This study investigated whether cotreatment with 6-shogaol and L-dopa could attenuate both motor and non-motor symptoms and dopaminergic neuronal damage. Both 6-shogaol (20 mg/kg) and L-dopa (80 mg/kg) were orally administered to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid-induced PD model mice for 26 days. The experimental results showed that L-dopa alleviated motor symptoms, but had no significant effect on non-motor symptoms, loss of dopaminergic neuron, or neuroinflammation. However, when mice were treated with 6-shogaol alone or in combination with L-dopa, an amelioration in both motor and non-motor symptoms such as depression-like behavior, olfactory dysfunction and memory impairment was observed. Moreover, 6-shogaol-only or co-treatment of 6-shogaol with L-dopa protected dopaminergic neurons in the striatum and reduced neuroinflammation in the striatum and substantia nigra. Overall, these results suggest that 6-shogaol can effectively complement L-dopa by improving non-motor dysfunction and restoring dopaminergic neurons via suppressing neuroinflammation.

Keywords

Acknowledgement

This study was supported by the National Research Foundation of Korea Grant and Commercialization Promotion Agency for R&D Outcomes (COMPA) (2021M3A9G1015618). This research was also supported by grants from the National Research Foundation of Korea, funded by the Korean government (grant number 2022M3A9B6017813).

References

  1. Ballester, P., Cerda, B., Arcusa, R., Marhuenda, J., Yamedjeu, K. and Zafrilla, P. (2022) Effect of ginger on inflammatory diseases. Molecules 27, 7223.
  2. Choi, J. G., Huh, E., Ju, I. G., Kim, N., Yun, J. and Oh, M. S. (2018) 1-Methyl-4-phenyl-1,2,3,6 tetrahydropyridine/probenecid impairs intestinal motility and olfaction in the early stages of Parkinson's disease in mice. J. Neurol. Sci. 392, 77-82. https://doi.org/10.1016/j.jns.2018.07.011
  3. Choi, Y., Huh, E., Lee, S., Kim, J. H., Park, M. G., Seo, S. Y., Kim, S. Y. and Oh, M. S. (2023) 5-Hydroxytryptophan reduces levodopa-induced dyskinesia via regulating AKT/mTOR/S6K and CREB/DeltaFosB signals in a mouse model of Parkinson's disease. Biomol. Ther. (Seoul) 31, 402-410. https://doi.org/10.4062/biomolther.2022.141
  4. Dzamko, N. (2023) Cytokine activity in Parkinson's disease. Neuronal Signal. 7, NS20220063.
  5. Fahn, S. (2008) The history of dopamine and levodopa in the treatment of Parkinson's disease. Mov. Disord. 23 Suppl 3, S497-S508. https://doi.org/10.1002/mds.22028
  6. Ham, H. J., Yeo, I. J., Jeon, S. H., Lim, J. H., Yoo, S. S., Son, D. J., Jang, S. S., Lee, H., Shin, S. J., Han, S. B., Yun, J. S. and Hong, J. T. (2022) Botulinum toxin A ameliorates neuroinflammation in the MPTP and 6-OHDA-induced Parkinson's disease models. Biomol. Ther. (Seoul) 30, 90-97. https://doi.org/10.4062/biomolther.2021.077
  7. Hauser, R. A. (2009) Levodopa: past, present, and future. Eur. Neurol. 62, 1-8. https://doi.org/10.1159/000215875
  8. Ho, S. C. and Chang, Y. H. (2018) Comparison of inhibitory capacities of 6-, 8- and 10-gingerols/shogaols on the canonical NLRP3 inflammasome-mediated IL-1beta secretion. Molecules 23, 466.
  9. Hormann, P., Delcambre, S., Hanke, J., Geffers, R., Leist, M. and Hiller, K. (2021) Impairment of neuronal mitochondrial function by L-DOPA in the absence of oxygen-dependent auto-oxidation and oxidative cell damage. Cell Death Discov. 7, 151.
  10. Huh, E., Choi, J. G., Choi, Y., Ju, I. G., Noh, D., Shin, D. Y., Kim, D. H., Park, H. J. and Oh, M. S. (2023) 6-Shogaol, an active ingredient of ginger, improves intestinal and brain abnormalities in proteus mirabilis-induced Parkinson's disease mouse model. Biomol. Ther. (Seoul) 31, 417-424. https://doi.org/10.4062/biomolther.2023.098
  11. Huh, E., Choi, J. G., Noh, D., Yoo, H. S., Ryu, J., Kim, N. J., Kim, H. and Oh, M. S. (2020) Ginger and 6-shogaol protect intestinal tight junction and enteric dopaminergic neurons against 1-methyl-4-phenyl 1,2,3,6-tetrahydropyridine in mice. Nutr. Neurosci. 23, 455-464. https://doi.org/10.1080/1028415X.2018.1520477
  12. Huh, E., Choi, J. G., Sim, Y. and Oh, M. S. (2018) An integrative approach to treat Parkinson's disease: ukgansan complements L-dopa by ameliorating dopaminergic neuronal damage and L-dopa-induced dyskinesia in mice. Front. Aging Neurosci. 10, 431.
  13. Kalia, L. V. and Lang, A. E. (2015) Parkinson's disease. Lancet 386, 896-912. https://doi.org/10.1016/S0140-6736(14)61393-3
  14. Kim, S. K., Ko, Y. H., Lee, Y., Lee, S. Y. and Jang, C. G. (2021) Antineuroinflammatory effects of 7,3',4'-Trihydroxyisoflavone in lipopolysaccharide-stimulated BV2 microglial cells through MAPK and NF-kappaB signaling suppression. Biomol. Ther. (Seoul) 29, 127-134. https://doi.org/10.4062/biomolther.2020.093
  15. Langston, J. W. (2017) The MPTP story. J. Parkinsons Dis. 7, S11-S19. https://doi.org/10.3233/JPD-179006
  16. Morris, H. R., Spillantini, M. G., Sue, C. M. and Williams-Gray, C. H. (2024) The pathogenesis of Parkinson's disease. Lancet 403, 293-304. https://doi.org/10.1016/S0140-6736(23)01478-2
  17. National Research Council (2011) Guide for the Care and Use of Laboratory Animals, 8th ed. The National Academies Press, Washington, DC.
  18. Pantcheva, P., Reyes, S., Hoover, J., Kaelber, S. and Borlongan, C. V. (2015) Treating non-motor symptoms of Parkinson's disease with transplantation of stem cells. Expert Rev. Neurother. 15, 1231-1240. https://doi.org/10.1586/14737175.2015.1091727
  19. Park, G., Kim, H. G., Ju, M. S., Ha, S. K., Park, Y., Kim, S. Y. and Oh, M. S. (2013) 6-Shogaol, an active compound of ginger, protects dopaminergic neurons in Parkinson's disease models via anti-neuroinflammation. Acta Pharmacol. Sin. 34, 1131-1139. https://doi.org/10.1038/aps.2013.57
  20. Park, J. S., Leem, Y. H., Park, J. E., Kim, D. Y. and Kim, H. S. (2019) Neuroprotective effect of beta-Lapachone in MPTP-induced Parkinson's disease mouse model: involvement of astroglial p-AMPK/Nrf2/HO-1 signaling pathways. Biomol. Ther. (Seoul) 27, 178-184. https://doi.org/10.4062/biomolther.2018.234
  21. Petroske, E., Meredith, G. E., Callen, S., Totterdell, S. and Lau, Y. S. (2001) Mouse model of Parkinsonism: a comparison between subacute MPTP and chronic MPTP/probenecid treatment. Neuroscience 106, 589-601. https://doi.org/10.1016/S0306-4522(01)00295-0
  22. Pfeiffer, R. F. (2016) Non-motor symptoms in Parkinson's disease. Parkinsonism Relat. Disord. 22 Suppl 1, S119- S122. https://doi.org/10.1016/j.parkreldis.2015.09.004
  23. Prasad, R. G., Choi, Y. H. and Kim, G. Y. (2015) Shikonin isolated from Lithospermum erythrorhizon downregulates proinflammatory mediators in lipopolysaccharide-stimulated BV2 microglial cells by suppressing crosstalk between reactive oxygen species and NF-kappaB. Biomol. Ther. (Seoul) 23, 110-118. https://doi.org/10.4062/biomolther.2015.006
  24. Schapira, A. H. V., Chaudhuri, K. R. and Jenner, P. (2017) Non-motor features of Parkinson disease. Nat. Rev. Neurosci. 18, 435-450. https://doi.org/10.1038/nrn.2017.62
  25. Shin, J. W., Cheong, Y. J., Koo, Y. M., Kim, S., Noh, C. K., Son, Y. H., Kang, C., Sohn, N. W. (2014) alpha-Asarone ameliorates memory deficit in lipopolysaccharide-treated mice via suppression of proinflammatory cytokines and microglial activation. Biomol. Ther. (Seoul) 22, 17-26. https://doi.org/10.4062/biomolther.2013.102
  26. Tambasco, N., Romoli, M. and Calabresi, P. (2018) Levodopa in Parkinson's disease: current status and future developments. Curr. Neuropharmacol. 16, 1239-1252. https://doi.org/10.2174/1570159X15666170510143821
  27. Tansey, M. G., Wallings, R. L., Houser, M. C., Herrick, M. K., Keating, C. E. and Joers, V. (2022) Inflammation and immune dysfunction in Parkinson disease. Nat. Rev. Immunol. 22, 657-673. https://doi.org/10.1038/s41577-022-00684-6
  28. Tibar, H., El Bayad, K., Bouhouche, A., Ait Ben Haddou, E. H., Benomar, A., Yahyaoui, M., Benazzouz, A. and Regragui, W. (2018) Non-motor symptoms of Parkinson's disease and their impact on quality of life in a cohort of moroccan patients. Front. Neurol. 9, 170.
  29. Weintraub, D., Aarsland, D., Chaudhuri, K. R., Dobkin, R. D., Leentjens, A. F., Rodriguez-Violante, M. and Schrag, A. (2022) The neuropsychiatry of Parkinson's disease: advances and challenges. Lancet Neurol. 21, 89-102. https://doi.org/10.1016/S1474-4422(21)00330-6
  30. Wu, D. D., Su, W., He, J., Li, S. H., Li, K. and Chen, H. B. (2022) Nonmotor symptoms and quality of life in Parkinson's disease with different motor subtypes. Z. Gerontol. Geriatr. 55, 496-501. https://doi.org/10.1007/s00391-021-01950-3
  31. You, H., Mariani, L. L., Mangone, G., Le Febvre de Nailly, D., Charbonnier-Beaupel, F. and Corvol, J. C. (2018) Molecular basis of dopamine replacement therapy and its side effects in Parkinson's disease. Cell Tissue Res. 373, 111-135. https://doi.org/10.1007/s00441-018-2813-2