Acknowledgement
This study was supported by the National Research Foundation of Korea Grant and Commercialization Promotion Agency for R&D Outcomes (COMPA) (2021M3A9G1015618). This research was also supported by grants from the National Research Foundation of Korea, funded by the Korean government (grant number 2022M3A9B6017813).
References
- Ballester, P., Cerda, B., Arcusa, R., Marhuenda, J., Yamedjeu, K. and Zafrilla, P. (2022) Effect of ginger on inflammatory diseases. Molecules 27, 7223.
- Choi, J. G., Huh, E., Ju, I. G., Kim, N., Yun, J. and Oh, M. S. (2018) 1-Methyl-4-phenyl-1,2,3,6 tetrahydropyridine/probenecid impairs intestinal motility and olfaction in the early stages of Parkinson's disease in mice. J. Neurol. Sci. 392, 77-82. https://doi.org/10.1016/j.jns.2018.07.011
- Choi, Y., Huh, E., Lee, S., Kim, J. H., Park, M. G., Seo, S. Y., Kim, S. Y. and Oh, M. S. (2023) 5-Hydroxytryptophan reduces levodopa-induced dyskinesia via regulating AKT/mTOR/S6K and CREB/DeltaFosB signals in a mouse model of Parkinson's disease. Biomol. Ther. (Seoul) 31, 402-410. https://doi.org/10.4062/biomolther.2022.141
- Dzamko, N. (2023) Cytokine activity in Parkinson's disease. Neuronal Signal. 7, NS20220063.
- Fahn, S. (2008) The history of dopamine and levodopa in the treatment of Parkinson's disease. Mov. Disord. 23 Suppl 3, S497-S508. https://doi.org/10.1002/mds.22028
- Ham, H. J., Yeo, I. J., Jeon, S. H., Lim, J. H., Yoo, S. S., Son, D. J., Jang, S. S., Lee, H., Shin, S. J., Han, S. B., Yun, J. S. and Hong, J. T. (2022) Botulinum toxin A ameliorates neuroinflammation in the MPTP and 6-OHDA-induced Parkinson's disease models. Biomol. Ther. (Seoul) 30, 90-97. https://doi.org/10.4062/biomolther.2021.077
- Hauser, R. A. (2009) Levodopa: past, present, and future. Eur. Neurol. 62, 1-8. https://doi.org/10.1159/000215875
- Ho, S. C. and Chang, Y. H. (2018) Comparison of inhibitory capacities of 6-, 8- and 10-gingerols/shogaols on the canonical NLRP3 inflammasome-mediated IL-1beta secretion. Molecules 23, 466.
- Hormann, P., Delcambre, S., Hanke, J., Geffers, R., Leist, M. and Hiller, K. (2021) Impairment of neuronal mitochondrial function by L-DOPA in the absence of oxygen-dependent auto-oxidation and oxidative cell damage. Cell Death Discov. 7, 151.
- Huh, E., Choi, J. G., Choi, Y., Ju, I. G., Noh, D., Shin, D. Y., Kim, D. H., Park, H. J. and Oh, M. S. (2023) 6-Shogaol, an active ingredient of ginger, improves intestinal and brain abnormalities in proteus mirabilis-induced Parkinson's disease mouse model. Biomol. Ther. (Seoul) 31, 417-424. https://doi.org/10.4062/biomolther.2023.098
- Huh, E., Choi, J. G., Noh, D., Yoo, H. S., Ryu, J., Kim, N. J., Kim, H. and Oh, M. S. (2020) Ginger and 6-shogaol protect intestinal tight junction and enteric dopaminergic neurons against 1-methyl-4-phenyl 1,2,3,6-tetrahydropyridine in mice. Nutr. Neurosci. 23, 455-464. https://doi.org/10.1080/1028415X.2018.1520477
- Huh, E., Choi, J. G., Sim, Y. and Oh, M. S. (2018) An integrative approach to treat Parkinson's disease: ukgansan complements L-dopa by ameliorating dopaminergic neuronal damage and L-dopa-induced dyskinesia in mice. Front. Aging Neurosci. 10, 431.
- Kalia, L. V. and Lang, A. E. (2015) Parkinson's disease. Lancet 386, 896-912. https://doi.org/10.1016/S0140-6736(14)61393-3
- Kim, S. K., Ko, Y. H., Lee, Y., Lee, S. Y. and Jang, C. G. (2021) Antineuroinflammatory effects of 7,3',4'-Trihydroxyisoflavone in lipopolysaccharide-stimulated BV2 microglial cells through MAPK and NF-kappaB signaling suppression. Biomol. Ther. (Seoul) 29, 127-134. https://doi.org/10.4062/biomolther.2020.093
- Langston, J. W. (2017) The MPTP story. J. Parkinsons Dis. 7, S11-S19. https://doi.org/10.3233/JPD-179006
- Morris, H. R., Spillantini, M. G., Sue, C. M. and Williams-Gray, C. H. (2024) The pathogenesis of Parkinson's disease. Lancet 403, 293-304. https://doi.org/10.1016/S0140-6736(23)01478-2
- National Research Council (2011) Guide for the Care and Use of Laboratory Animals, 8th ed. The National Academies Press, Washington, DC.
- Pantcheva, P., Reyes, S., Hoover, J., Kaelber, S. and Borlongan, C. V. (2015) Treating non-motor symptoms of Parkinson's disease with transplantation of stem cells. Expert Rev. Neurother. 15, 1231-1240. https://doi.org/10.1586/14737175.2015.1091727
- Park, G., Kim, H. G., Ju, M. S., Ha, S. K., Park, Y., Kim, S. Y. and Oh, M. S. (2013) 6-Shogaol, an active compound of ginger, protects dopaminergic neurons in Parkinson's disease models via anti-neuroinflammation. Acta Pharmacol. Sin. 34, 1131-1139. https://doi.org/10.1038/aps.2013.57
- Park, J. S., Leem, Y. H., Park, J. E., Kim, D. Y. and Kim, H. S. (2019) Neuroprotective effect of beta-Lapachone in MPTP-induced Parkinson's disease mouse model: involvement of astroglial p-AMPK/Nrf2/HO-1 signaling pathways. Biomol. Ther. (Seoul) 27, 178-184. https://doi.org/10.4062/biomolther.2018.234
- Petroske, E., Meredith, G. E., Callen, S., Totterdell, S. and Lau, Y. S. (2001) Mouse model of Parkinsonism: a comparison between subacute MPTP and chronic MPTP/probenecid treatment. Neuroscience 106, 589-601. https://doi.org/10.1016/S0306-4522(01)00295-0
- Pfeiffer, R. F. (2016) Non-motor symptoms in Parkinson's disease. Parkinsonism Relat. Disord. 22 Suppl 1, S119- S122. https://doi.org/10.1016/j.parkreldis.2015.09.004
- Prasad, R. G., Choi, Y. H. and Kim, G. Y. (2015) Shikonin isolated from Lithospermum erythrorhizon downregulates proinflammatory mediators in lipopolysaccharide-stimulated BV2 microglial cells by suppressing crosstalk between reactive oxygen species and NF-kappaB. Biomol. Ther. (Seoul) 23, 110-118. https://doi.org/10.4062/biomolther.2015.006
- Schapira, A. H. V., Chaudhuri, K. R. and Jenner, P. (2017) Non-motor features of Parkinson disease. Nat. Rev. Neurosci. 18, 435-450. https://doi.org/10.1038/nrn.2017.62
- Shin, J. W., Cheong, Y. J., Koo, Y. M., Kim, S., Noh, C. K., Son, Y. H., Kang, C., Sohn, N. W. (2014) alpha-Asarone ameliorates memory deficit in lipopolysaccharide-treated mice via suppression of proinflammatory cytokines and microglial activation. Biomol. Ther. (Seoul) 22, 17-26. https://doi.org/10.4062/biomolther.2013.102
- Tambasco, N., Romoli, M. and Calabresi, P. (2018) Levodopa in Parkinson's disease: current status and future developments. Curr. Neuropharmacol. 16, 1239-1252. https://doi.org/10.2174/1570159X15666170510143821
- Tansey, M. G., Wallings, R. L., Houser, M. C., Herrick, M. K., Keating, C. E. and Joers, V. (2022) Inflammation and immune dysfunction in Parkinson disease. Nat. Rev. Immunol. 22, 657-673. https://doi.org/10.1038/s41577-022-00684-6
- Tibar, H., El Bayad, K., Bouhouche, A., Ait Ben Haddou, E. H., Benomar, A., Yahyaoui, M., Benazzouz, A. and Regragui, W. (2018) Non-motor symptoms of Parkinson's disease and their impact on quality of life in a cohort of moroccan patients. Front. Neurol. 9, 170.
- Weintraub, D., Aarsland, D., Chaudhuri, K. R., Dobkin, R. D., Leentjens, A. F., Rodriguez-Violante, M. and Schrag, A. (2022) The neuropsychiatry of Parkinson's disease: advances and challenges. Lancet Neurol. 21, 89-102. https://doi.org/10.1016/S1474-4422(21)00330-6
- Wu, D. D., Su, W., He, J., Li, S. H., Li, K. and Chen, H. B. (2022) Nonmotor symptoms and quality of life in Parkinson's disease with different motor subtypes. Z. Gerontol. Geriatr. 55, 496-501. https://doi.org/10.1007/s00391-021-01950-3
- You, H., Mariani, L. L., Mangone, G., Le Febvre de Nailly, D., Charbonnier-Beaupel, F. and Corvol, J. C. (2018) Molecular basis of dopamine replacement therapy and its side effects in Parkinson's disease. Cell Tissue Res. 373, 111-135. https://doi.org/10.1007/s00441-018-2813-2