• Title/Summary/Keyword: dopamine levels

Search Result 151, Processing Time 0.024 seconds

Oviposition Patterns Associated with Prolactin Concentration in Domestic Chicken (Gallus domesticus)

  • David, C.G.;Reddy, I.J.;Khub, Singh
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.11
    • /
    • pp.1565-1571
    • /
    • 2003
  • Physiological mechanisms, involved in unusual ovulatory sequences in domestic hen are remaining undefined. One hundred individually caged white leghorn birds were divided into two equal groups viz. control and treatment, and 2-bromo-$\alpha$-ergocryptine, was administered to birds in the treatment group to modulate prolactin (PRL) secretion from anterior pituitary gland. The effect of modulation of PRL concentrations on egg production, sequence length and intersequence pause length were studied by analysis of oviposition records of the birds from 24 to 72 weeks of age. The surviving 48 birds in the control and treatment groups averaged $34.58{\pm}1.7$ and $25.67{\pm}1.15$ sequences of oviposition, with a mean sequence length of $9.92{\pm}0.63$ and ${\pm}1.12$ days respectively. Most of the birds had a single characteristically long sequence during the entire reproductive cycle, which averaged $46.04{\pm}3.09$ days in the control birds and $59.33{\pm}4.44$ days in the treated birds. 2-bromo-$\alpha$-ergocriptine treatments had significantly decreased (p$\leq$0.01) the circulating concentrations of PRL compared to the birds of the control group. This resulted in a significant increase (p$\leq$0.01) in the number of laying days in birds of the treatment group with a concomitant decrease in the intersequence pause length. The decreased PRL levels during prime sequences in birds of the both groups, reveals the negative role of the circulating PRL levels on egg production with concomitant shorter intersequence pause length. Hence, modulation of PRL with dopamine agonist may enhance the reproductive efficiency of hens later in life.

Antidepressant Effects of Cynanchum wilfordii Hemsley, Phlomis umbrosa Turcz, and Angelica gigas Nakai via Inhibition of 5-HT6 Receptor-mediated cyclic AMP Activity

  • Oh, Kyo-nyeo;Oh, Dool-Ri;Jung, Myung-A;Kim, Yujin;Choi, Eun Jin;Hong, Ji Ae;Kim, Jaeyong;Choi, Chul-yung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.32 no.4
    • /
    • pp.247-254
    • /
    • 2018
  • A This study evaluated the antidepressant effects of the herbal mixture CPAE(Cynanchum wilfordii Hemsley, Phlomis umbrosa Turcz, and Angelica gigas Nakai) using several tests, including a test for serotonin 6($5-HT_6$) receptor activity, the forced swimming test(FST), and tests for corticosterone(CORT) and monoamine levels. CPAE showed antagonistic effects on the $5-HT_6$ receptor in a stable $5-HT_6$ receptor-expressing cell line. We subsequently confirmed the antidepressant effects of CPAE in chronic stress model in mice and explored the underlying mechanisms of its action. Specifically, we observed that CPAE treatment significantly reduced immobility time in the FST and effectively restored abnormal levels of CORT in plasma and of monoamines(serotonin, dopamine, and norepinephrine) in hippocampus and prefrontal cortex. These results suggest that CPAE has significant antidepressant effects.

Relationship of Estrogen to Extrapyramidal Symptoms in Female Schizophrenic Patients (여자 정신분열병 환자에서 혈중 에스트로겐 농도와 추체외로 증상과의 관계)

  • Chung, Dong Seon;Jung, Hee Yeon;Kwon, Young Joon;Park, In Joon;Han, Sun Ho;Jung, Han Yong
    • Korean Journal of Biological Psychiatry
    • /
    • v.8 no.1
    • /
    • pp.147-152
    • /
    • 2001
  • Objective : It has been thought that estrogen has neuroleptic like effect in women schizophrenic patients. This study aimed to investigate neuroleptic side-effects severity in women with schizophrenia and to investigate their putative association with variations in sex steroids over menstrual cycle. Based on the estrogen theory, The author hypothesized that parkinsonian side-effects would be exacerbated when estrogen levels were high. Method : 26 schizophrenic women were assessed using the ESRS(Extrapyramidal Symptom Rating Scale) and estrogen analysis. Tests were conducted twice, in the mid luteal and mid follicular phase. Result : It was hypothesized that high level of estrogen would lead to an exacerbation of parkinsonian side-effects but the results indicated that parkinsonian side effects decreased overall when estrogen levels were high. This effects were more marked for the group taking typical neuroleptics than those taking atypical neuroleptics. Conclusion : The results of this study suggest that estrogen and progesteron may reduce the severity of neuroleptic induced extrapyramidal side effects over menstrual cycle in women with schizophrenia. It was concluded that estrogen has different effects on dopamine dynamics in the mesolimbic and mesostriatal pathways according to estrogen, progesteron, catecol estrogen, prolactine.

  • PDF

Inhibition of Tyrosine Hydroxylase by $(1R,9S)-{\beta}-Hydrastine$ Hydrochloride in PC12 cells

  • Yin, Shou-Yu;Kim, Yu-Mi;Lee, Jae-Joon;Jin, Chun-Mei;Yang, Yoo-Jung;Lim, Kyo-Whan;Kang, Min-Hee;Lee, Myung-Koo
    • Natural Product Sciences
    • /
    • v.10 no.3
    • /
    • pp.114-118
    • /
    • 2004
  • It is reported that $(1R,9S)-{\beta}-Hydrastine$ hydrochloride (BHSH) decreased the intracellular dopamine content by inhibiting tyrosine hydroxylase (TH) activity in PC12 cells. In this study, the inhibitory mechanisms on TH activity by BHSH in PC12 cells were investigated. BHSH treatment caused a reduction of TH activity and TH mRNA level in a dose-dependent manner. After the treatment of $20\;{\mu}M$ BHSH, TH activity and TH mRNA content were reduced at 15 min, reached the minimal levels at 6-24 h, and then recovered gradually to the control level. BHSH at $10-50\;{\mu}M$ caused a decrease in the basal intracellular cyclic AMP levels at 10 min in a concentration-dependent manner. In addition, BHSH at $20-100\;{\mu}M$ decreased the basal intracellular $Ca^{2+}$ concentration $([Ca^{2+}]_i)$ immediately in a dose-dependent manner. BHSH also inhibited the 56 mM $K^+ $ depolarization-induced elevation in $[Ca^{2+}]_i$, and blocked caffeine-activated store-operated $Ca^{2+}$ entry in PC12 cells. These data suggest that BHSH inhibits TH activity and TH gene expression, in part, through reducing cyclic AMP content and basal $[Ca^{2+}]_i$ in PC12 cells.

Protective effects of blueberry drink on cognitive impairment induced by chronic mild stress in adult rats

  • Guo, Qian;Kim, Young-Nam;Lee, Bog-Hieu
    • Nutrition Research and Practice
    • /
    • v.11 no.1
    • /
    • pp.25-32
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Stress-induced cognitive impairment is related to the suppression of hippocampal neurogenesis that results from an increase of oxidative stress. Therefore, the aim of this study was to investigate the effects of administration of a blueberry drink, having a high antioxidant power, on the cognitive performance of adult rats exposed to chronic mild stress. MATERIALS/METHODS: Twelve-week-old male Sprague-Dawley rats (n = 48) were randomly divided into four groups: control (CO), stress (ST), control + 5% blueberry drink (CO + B), and stress + 5% blueberry drink (ST + B). After eight weeks, the cognitive performance was assessed using a multiple T-maze water test. Levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and ascorbic acid were measured in the brain, and catecholamine concentrations were measured in plasma. RESULTS: The brain weights of the rats from the ST and ST + B groups were significantly lower than those of the rats from the CO and CO + B groups. The cognitive performance of the ST group was impaired when compared to that of the CO group. This impairment was significantly improved by the blueberry drink supplementation (P < 0.05). The brain SOD and CAT concentrations were not influenced by the stress or by the blueberry drink. However, the brain levels of GPx and ascorbic acid were significantly lower in the ST group than those in the CO group and were increased by the blueberry drink supplementation. The plasma catecholamine concentrations were affected by chronic mild stress and by the blueberry drink. The plasma norepinephrine and dopamine concentrations were decreased by the chronic stress and improved by the blueberry drink supplementation. The plasma epinephrine level was only influenced by the stress. CONCLUSION: These findings suggest that the blueberry drink may protect against the cognitive impairment induced by chronic mild stress.

Cigarette Smoke Attenuates Histopathological and Neurobiological Changes Caused by 87V Scrapie Agent Infection in IM Mice

  • Sohn Hyung-Ok;Hyun Hak-Chul;Shin Han-Jae;Han Jung-Ho;Park Chul-Hoon;Moon Ja-Young;Lim Heung-Bin;Kim Yong-Sun;Lee Dong-Wook
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.27 no.2
    • /
    • pp.212-218
    • /
    • 2005
  • Cigarette smoking has been known to have a few beneficial effects on some neuronal diseases such as Alzheimer's disease(AD), Parkinson's disease(PD) and prion disease by scrapie agent shows many similar properties with AD. In this respect, we investigated what biological effects are exerted by cigarette smoke exposure(CSE) in the brain of mouse infected by 87V scrapie. The scrapie agent was inoculated through stereotaxic microinjection of the homogenates of the scrapie agent infected brain into the intracerebral system in the 1M mice. The inoculation into mice typically exhibits neurochemical, physiological and histopathological characteristics of prion disease: loss of neurotransmitters and induction of astrocytosis and vacuolation in brain as well as reduction of spatial movement and loss of body weight. CSE led to alleviated the loss of body weight and also improved spatial movement of the infected mice. Most interestingly, CSE attenuated astrocytosis and vacuolation caused by scrapie infection in the brain. In addition, decreased levels of dopamine in striatal and hypothalamic regions as well as serotonin level in hippocampus caused by scrapie infection were also attenuated by exposure to cigarette smoke. These findings suggest that cigarette smoke, by its inhibition of astrocytosis and vacuolation followed by its restoration of levels of some neurotransmitters, may partly contribute to suppression in the progress of neurodegeneration caused by scrapie infection.

Studies on The Action of Kamisungihwalhyul-tang on DOCA-salt Hypertensive Rat (가미순기활혈탕(加味順氣活血湯)이 DOCA-salt로 유발된 고혈압(高血壓) 흰 쥐에 미치는 작용기전)

  • Lee, Young-Hun;Jun, Sang-Yun;Hong, Seok;Cho, Gook-Ryung;Kim, Nam-Uk;Kang, Seong-In;Jung, Jong-An
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.1
    • /
    • pp.162-170
    • /
    • 2008
  • Kamisungihwalhyul-tang(KSHT) has been used for many years as a therapeutic agent for cerebrovascular disease and hypertension in Oriental Medicine. But the effect of KSHT on hypertension and reactive oxygen is not well-known. This study was examined to investigate the effect of KSHT on hypertension and reactive oxygen. After administering KSHT extract to Sprague- Dawley Rat forinjected subcutaneous with deoxycorticosterone acetate(DOCA) 8 weeks, changes in blood pressure, pulse rate, 2,2-diphenyl-1-picrylhydrazyl, reactive oxygen species, angiotensin converting enzyme, aldosterone, catecholamine levels, electrolyte, uric acid, BUN, creatinine in plasma were examined, and immunohistochemical changes and scanning electron microscopic changes were observed. 2,2-diphenyl-1-picrylhydrazyl(DPPH) scavenging activity was increased, reactive oxygen species(ROS) was decreased in a KSHT concentration-dependent. Angiotensin converting enzyme(ACE) inhibitory activity was increased in a concentration-dependent by KSHT. KSHT significantly decreased the blood pressure and heart rate in DOCA-salt hypertensive rat. KSHT significantly decreased the levels of aldosterone in DOCA-salt hypertensive rat. KSHT significantly decreased the level of dopamine, norepinephrine, epinephrine in DOCA-salt hypertensive rat. $Na^+$, $K^+$ and Cl- were decreased significantly, $Ca^{2+}$ was increased significantly by KSHT. KSHT significantly decreased uric acid, BUN, creatinine.

Protective Effects of Gamiheechum-tang(Jiaweixiqian-tang) on Hypertension and Brain Damage (가미치첨탕이 고혈압 및 뇌손상에 미치는 효과)

  • Ryu, Jong-Sam;Kim, Dong-Hee;Park, Jong-O;Namgung, UK;Hong, Seok
    • The Journal of Korean Medicine
    • /
    • v.24 no.3
    • /
    • pp.72-83
    • /
    • 2003
  • Objective : The goal of the present study was to investigate the protective effect of Gamiheechum-tang (Jiaweixiqian-tang; GHCT) on brain tissue damage from chemical or ischemic insults. Methods : Levels of cultured cortical neuron death caused by toxic chemicals were measured by LDH release assay. Neuroprotective effects of GHCT on brain tissues were examined in vivo by ischemic model of middle cerebral artery (MCA) occlusion. Results : Animal groups treated with GBCT showed significantly decreased hypertension, and reduced levels of aldosterone, dopamine, and epinephrine in the plasma. GHCT treatments ($l0-200\mu\textrm{g}/ml$) significantly decreased cultured cortical neuron death mediated by AMPA, kainate, BSO, or Fe2+ when measured by LDH release assay. Yet, cell death mediated by NMDA was effectively protected by GHCT at the highest concentration examined ($200\mu\textrm{g}/ml$). In the in vivo experiment examining brain damage by MCA occlusion, affected brain areas by ischemic damage and edema were significantly less in animal groups administered with GHCT compared to the non-treated control group. Neurological examinations of forelimbs and hindlimbs showed that GHCT treatment improved animals' recovery from ischemic injury. Moreover, the extent of injury in cortical and hippocampal pyramidal neurons in ischemic rats was much reduced by GHCT, whose morphological features were similarly observed in non-ischemic animals. Conclusion : The present data suggest that GBCT may play an important role in protecting brain tissues from chemical or ischemic injuries.

  • PDF

Effect of Chungyeoldodam-tang on Hypertension (청열도담탕이 고혈압에 미치는 영향)

  • Park, Kyung-Ho;Choi, Hak-Joo;Roh, Seong-Soo;Koo, Young-Sun;Kim, Dong-Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.626-633
    • /
    • 2007
  • To access the safety and efficacy of Chungyeoldodam-tang(CDT), a traditional herbal medicine prescription, on hypertension we examined various parameters involved in the pathogenesis of hypertension. CDT seems to be safe because CDT at the concentrations lower that 250 ug/ml showed no toxic effects in cultured human fibroblast and no toxic effects on liver function. The production of reactive oxygen species (ROS) were greatly decreased in CDT treated group compared with control, and angiotensin converting enzyme activities were reduced by CDT in a dose dependent manner. There was no differences in weight of hearts between control and CDT treated group. The blood pressure and pulse rate were significantly decreased. CDT greatly reduced the levels of plasma hormones including aldosterone, dopamine, and norepinephrine, but not epinephrine, and serum electrocytes including Na$^+$ and Cl$^-$, but not K$^+$. were also decreased. The levels of uric acid, BUN and creatinine were significantly decreased compared with control. These results suggested that CDT has suppressive effects on various pathologic factors in hypertension, and CDT has potential as a safe and effective therapeutics for hypertension.

Role of Dehydrocorybulbine in Neuropathic Pain After Spinal Cord Injury Mediated by P2X4 Receptor

  • Wang, Zhongwei;Mei, Wei;Wang, Qingde;Guo, Rundong;Liu, Peilin;Wang, Yuqiang;Zhang, Zijuan;Wang, Limin
    • Molecules and Cells
    • /
    • v.42 no.2
    • /
    • pp.143-150
    • /
    • 2019
  • Chronic neuropathic pain is one of the primary causes of disability subsequent to spinal cord injury. Patients experiencing neuropathic pain after spinal cord injury suffer from poor quality of life, so complementary therapy is seriously needed. Dehydrocorybulbine is an alkaloid extracted from Corydalis yanhusuo. It effectively alleviates neuropathic pain. In the present study, we explored the effect of dehydrocorybulbine on neuropathic pain after spinal cord injury and delineated its possible mechanism. Experiments were performed in rats to evaluate the contribution of dehydrocorybulbine to P2X4 signaling in the modulation of pain-related behaviors and the levels of pronociceptive interleukins and proteins after spinal cord injury. In a rat contusion injury model, we confirmed that chronic neuropathic pain is present on day 7 after spinal cord injury and P2X4R expression is exacerbated after spinal cord injury. We also found that administration of dehydrocorybulbine by tail vein injection relieved pain behaviors in rat contusion injury models without affecting motor functions. The elevation in the levels of pronociceptive interleukins ($IL-1{\beta}$, IL-18, MMP-9) after spinal cord injury was mitigated by dehydrocorybulbine. Dehydrocorybulbine significantly mitigated the upregulation of P2X4 receptor and reduced ATP-evoked intracellular $Ca^{2+}$ concentration. Both P2XR and dopamine receptor2 agonists antagonized dehydrocorybulbine's antinociceptive effects. In conclusion, we propose that dehydrocorybulbine produces antinociceptive effects in spinal cord injury models by inhibiting P2X4R.