• Title/Summary/Keyword: domestic resistance

Search Result 462, Processing Time 0.024 seconds

Characteristics of Nutrient Removal and Membrane Fouling in a Membrane Bioreactor using Food Waste as an Additional Carbon Source (음식폐기물 응축수를 보조탄소원으로 이용하는 막 결합 생물 응조에서의 질소, 인 제거와 막 오염 특성)

  • Ahn, Young-Tae;Youn, Jong-Ho;Chae, So-Ryong;Shin, Hang-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.519-524
    • /
    • 2005
  • Due to the low C/N ratio of domestic wastewater characteristic, addition of external carbon source for the effective N and P removal is necessary. High organic content of food waste can be used for the external carbon source in biological nutrient removal processes, The applicability of condensate of food waste (CFW), which is produced during the high-rate fermentation process, was examined in membrane bioreactor for the nutrient removal. Under the various operating conditions, nutrient removal efficiencies and membrane fouling characteristics were evaluated using synthetic wastewater. From nitrate utilization rate (NUR) test, denitrification rate was 0.19 g $NO_3-N/g$ VSS/day. With the addition of CFW increased, average removal efficiencies of T-N and T-P could be increased up to 64% and 41%, respectively. Also the optimal retention time was 3 hr/5 hr for anoxic/aerobic reactor. When applied to real sewage, membrane fouling resistance was increased up to 60%, which could be reduced from $10.4{\times}10^{12}m^{-1}$ to $5.9{\times}10^{12}m^{-1}$ with the control of influent suspended solid concentration. In summary, it was suggested that CFW could be used as an economical and effective carbon source for membrane assisted biological N and P removal.

Tensile Resistance and Field Application of Hang-type PC Beam (걸이형 PC보의 인장저항성 및 현장적용)

  • Ha, Sang-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.5
    • /
    • pp.449-457
    • /
    • 2020
  • Due to the improvement of living standards and avoidance of the 3D industry, it is difficult to find young and competent domestic workers at construction sites, and most foreign workers are contributing to the replacement, but the quality is still deteriorating due to lack of skilled workers and aging. Precast method is a method that make members in factory and assembles them on site, which can be expected to improve labor force and quality. This study is intended to provide basic data for the development of hang-type PC beams that can be applied to the determination of the field application of developed PC beams. The U-type connecting material is installed on both ends of the hang-up PC beam, and the role of the U-type connecting material is very important because it is a simple construction method through the U-type connecting material. In addition, the performance of the U-type connecting material will determine the performance of the hang-type PC beam as the final destruction occurs in the hang-type PC beam. The material properties of U-type connecting material were identified through structural experiments, and the end test corresponding to the partial experiment was conducted based on the material test results identified. Finally, the final design value of PC beams was proposed through structural experiments for application to the site.

Durability assessments of limestone mortars containing polypropylene fibres waste

  • Bendjillali, Khadra;Boulekbache, Bensaid;Chemrouk, Mohamed
    • Advances in concrete construction
    • /
    • v.10 no.2
    • /
    • pp.171-183
    • /
    • 2020
  • The main objective of this study is the assessment of the ability of limestone mortars to resist to different chemical attacks. The ability of polypropylene (PP) fibres waste used as reinforcement of these concrete materials to enhance their durability is also studied. Crushed sand 0/2 mm which is a fine limestone residue obtained by the crushing of natural rocks in aggregates industry is used for the fabrication of the mortar. The fibres used, which are obtained from the waste of domestic plastic sweeps' fabrication, have a length of 20 mm and a diameter ranging between 0.38 and 0.51 mm. Two weight fibres contents are used, 0.5 and 1%. The durability tests carried out in this investigation included the water absorption by capillarity, the mass variation, the flexural and the compressive strengths of the mortar specimens immersed for 366 days in 5% sodium chloride, 5% magnesium sulphate and 5% sulphuric acid solutions. A mineralogical analysis by X-ray diffraction (XRD) and a visual inspection are used for a better examination of the quality of tested mortars and for better interpretation of their behaviour in different solutions. The results indicate that the reinforcement of limestone mortar by PP fibres waste is an excellent solution to improve its chemical resistance and durability. Moreover, the presence of PP fibres waste does not affect significantly the water absorption by capillarity of mortar nether its mass variation, when exposed to chloride and sulphate solutions. While in sulphuric acid, the mass loss is higher with the presence of PP fibres waste, especially after an exposure of 180 days. The results reveal that these fibres have a considerable effect of the flexural and the compressive behaviour of mortar especially in acid solution, where a reduction of strength loss is observed. The mineralogical analysis confirms the good behaviour of mortar immersed in sulphate and chloride solutions; and shows that more gypsum is formed in mortar exposed to acid environment causing its rapid degradation. The visual observation reveals that only samples exposed to acid attack during 366 days have showed a surface damage extending over a depth of approximately 300 ㎛.

Evaluation of the Optimal Vertical Stiffness of a Fastener Along a High-speed Ballast Track (고속철도 자갈궤도 체결구 최적 수직강성 평가)

  • Yang, Sin-Choo;Kim, Eun
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.2
    • /
    • pp.139-148
    • /
    • 2015
  • By increasing the vertical stiffness of the rail fastening system, the dynamic wheel load of the vehicle can be increased on the ballast track, though this increases the cost of track maintenance. On the other hand, the resistance acting on the wheel is decreased, which lowers the cost of the electric power to run the train. For this reason, the determination of the optimal fastener stiffness is important when attempting to minimize the economic costs associated with both track maintenance and energy to operate the train. In this study, a numerical method for evaluating the optimal vertical stiffness of the fasteners used on ballast track is presented on the basis of the process proposed by L$\acute{o}$pez-Pita et al. They used an approximation formula while calculating the dynamic wheel load. The evaluated fastener stiffness is mainly affected by the calculated dynamic wheel load. In this study, the dynamic wheel load is more precisely evaluated with an advanced vehicle-track interaction model. An appropriate range of the stiffness of the fastener applicable to the design of ballast track along domestic high-speed lines is proposed.

Cyclic Structural Characteristics of Thermal Bridge Breaker Systems embedded in Reinforced Concrete Slabs (벽-슬래브 접합부에 매립된 열교차단장치의 반복하중에 대한 거동특성 평가)

  • Shin, Dong-Hyeon;Oh, Moung-Ho;Kim, Young-Ho;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.511-521
    • /
    • 2015
  • The thermal bridge occurring in a building influences its thermal performance and durability. The domestic typical multi-unit residential buildings suffer thermal losses resulting from thermal bridges of the balcony slab. To minimize the thermal loss between inside and outside of the balcony slab, thermal bridge breaker(TBB) systems have been developed and applied in building construction. Although thermal bridge breaker systems for reinforced concrete(RC) wall-slab joints can improve the thermal performance of a building, it is necessary to verify the structural performance of TBB systems whether they provide proper resistance for cyclic loading. In order to investigate the structural characteristics of TBB systems embedded in RC slabs, cyclic tests of wall-slab joints were performed by applying two reversed cycles at each up to 30 cycles. The test results show that the RC slabs embedding TBBS systems can present excellent structural performance and the maximum moment capacity, energy dissipation capacity and ductility of TBBs systems are enhanced compared to those of the typical RC slabs.

Risk Factors Related with Mortality in Patient with Pulmonary Tuberculosis

  • Kim, Chong Whan;Kim, Sang-Ha;Lee, Shun Nyung;Lee, Seok Jeong;Lee, Myoung Kyu;Lee, Ji-Ho;Shin, Kye Chul;Yong, Suk Joong;Lee, Won Yeon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.73 no.1
    • /
    • pp.38-47
    • /
    • 2012
  • Background: The prevalence rate of pulmonary tuberculosis (PTB) is steadily decreasing in South Korea. However, PTB is a disease with relatively high mortality and morbidity rates throughout Korea. Although there are many studies and statistics about the risk factors of PTB mortality in many countries, there are only a limited number of domestic papers on this topic. The aim of this study is to determine predictive factors for mortality among in-hospital patients associated with PTB. Methods: From December 2006 to January 2011, we reviewed medical records of 2,122 adult patients diagnosed with tuberculosis at a single tertiary hospital in a suburban area. In this study period, 960 patients were diagnosed with PTB by positive Acid fast bacilli smear and/or mycobacterial culture of the respiratory specimen. We compared the groups of patients deceased and patients discharged alive with PTB. The number of dead patients was 82 (47 males, 35 females). Results: Mortality was significantly associated with increased values of white blood cells (WBC), blood urine nitrogen (BUN), creatinine, C-reactive protein (CRP), numbers of involved lung field, and length of hospitalization. Also, it was associated with the decreased values of hemoglobin, lymphocyte, sodium, albumin, and cholesterol. Furthermore, admission through the emergency department, initial intensive care unit admission, and drug resistant PTB affected mortality in PTB patients. Independent predictors associated with PTB mortality are BUN, initial intensive care unit care, and admission during treatment of tuberculosis. Conclusion: In our study, mortality of pulmonary tuberculosis was related with parameters associated with nutritional status, disease severity at the time of admission, and drug resistance.

Evaluation of Hydraulic Stability Using Real Scale Experimental on Porous Concrete Revetment Block (다공성콘크리트 호안블록의 실규모 실험을 통한 수리안정성 평가)

  • Kim, Bong-Kyun;Seo, Dae-Seuk;Park, Jun-Seok;Kim, Yun-Yung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.122-130
    • /
    • 2016
  • The past few decades of industrialization enabled human-centered stream developments, which in turn resulted in constructing straight or covered streams, which are used only for sewage disposal purpose. However, these types of streams have become the cause of flood damages such as localized heavy rain. In response, various construction methods have been implemented to prevent stream and embankment damages. However, regulations regarding these measures only lay out minimum standards such as the height of slopes and the minimum angle of inclination. Moreover, examination of tractive force, the most crucial factor in preventing flood damage, is nonexistent. Therefore, this study evaluates various tractive forces by implementing a porous concrete tetrapod at a full scale artificial stream for experiment, controlling the rate of inflow, and measuring the velocity and depth of the stream under different experiment conditions. The test results of the compressive strength, and porosity and density of rock of the porous concrete tetrapod was between 16.6 and 23.2 MPa, and the actual measurement of air void was 10.1%, thus satisfying domestic standard. The result of tractive force experiment showed a limiting tractive force of $47.202N/m^2$, not satisfying the tractive force scope of $67N/m^2$ the stream design working expertise proposes. However, there was neither damage nor loss of blocks and hardpan. Based on previous researches, it can be expected that there will be resistance against a stronger tractive force. Therefore, it is necessary to conduct another experiment on practical limiting tractive force by adjusting some experimental conditions.

Preparation and characterization of high density polyethylene/silane treated pulverized-phenol resin composites (고밀도 폴리에틸렌과 실란 처리된 분쇄페놀수지 복합재의 제조 및 특성)

  • Park, Jun-Seo;Han, Chang-Gue;Nam, Byeong-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.27-33
    • /
    • 2016
  • Phenolic resin has excellent heat resistance and good mechanical properties as a thermosetting resin. However, its thermosetting characteristics cause it to produce a non-recyclable waste in the form of sprue and runner which is discarded and represents up to 15~20% of the overall products. Forty thousand tons of phenolic resin sprue and runner are disposed of (annually). The (annual) cost of such domestic waste disposal is calculated to be 20 billion won. In this study, discarded phenol resin scraps were pulverized and treated by silanes to improve their interfacial adhesion with HDPE. The sizes of the pulverized pulverulent bodies and fine particles were (100um~1000um) and (1~100um), respectively. The pulverized phenol resin was treated with 3-(methacryloyloxy) propyltrimethoxysilane and vinyltrimethoxy silane and the changes in its characteristics were evaluated. The thermal properties were evaluated by DSC and HDT. The mechanical properties were assessed by a notched Izod impact strength tester. When the silane treated phenol resin was added, the heat distortion temperature of HDPE increased from $77^{\circ}C$ to $96^{\circ}C$ and its crystallinity and crystallization temperature also increased. Finally, its impact strength and tensile strength increased by 20% and 50%, respectively, in comparison with the non-treated phenol resin.

Acculturation and Educational Paradigm Shift of China for Western Educational System (중·서 교육 패러다임의 접변과 변화)

  • Kim, dug sam;Lee, kyung ja
    • Cross-Cultural Studies
    • /
    • v.33
    • /
    • pp.385-406
    • /
    • 2013
  • This research starts based on the assumption that the changes of educational system in China which had been caused by accepting western educational system in the late Qing Dynasty and the early Republic of China are indeed considered as a paradigm shift of educational system in China, This research aims first to investigate what kinds of problems and changes Chinese educational system confronted at that time and second to examine what kinds of implications such changes and problems of paradigm shift may have today in China. In order to achieve the goals of this research, I first researched changes and characteristics of educational paradigm shift occurred in the history of China. On the basis of those findings, I tried to analyze acculturation problems of Chinese educational system for that of western countries at that time, their implications in present time Chinese educational system, and the possibility of further paradigmatic shift in present Chinese education. In this paper, I assumed three historical paradigmatic shifts in educational system in China which had big influences on the foundation of Chinese education, such as the introduction of Confucian Thoughts, the introduction of Civil Examination System in Sui Dynasty, and lastly the introduction of western educational system in the late Qing Dynasty. The last paradigmatic shift occurred by the introduction of western education system into China was very different from the previous two paradigmatic shifts in China in that it was literally initiated by the world with cultures different from those of China, and that's why it is called Spatial Collision. It was also one of the many changes China had been forced to confront unvoluntarily. It was done for many other complicated factors such as the greed of western imperialistic countries, spreading of Christianity and missionary education, domestic resistance against long feudal reigning of Qing Dynasty, and lastly the intellect's eagerness for new knowledge and new ways of thinking. What is surely regretful for the paradigmatic shift of Chinese educational system was that it had been triggered by those many heterogeneous factors, thereby leading to such a sudden, entire and complete shift of Chinese education system. In addition, it was done without a deeper and further consideration of Chinese education system with thousand years of tradition. This situation could be understood to be an impetus strong enough to encourage the advent of a new paradigm propelled by rapid economic growth of China, many problems of western education system, reconsideration of Chinese tradition, and strengthening of women power in China, etc.

Stability Evaluation on Particle Size Characteristics of Bed Materials at High-Velocity Flow (고유속 흐름에서 하상재료의 입도특성에 따른 안정성 평가연구)

  • Kim, Gwang Soo;Jung, Dong Gyu;Kim, Young Do;Park, Yong Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.365-376
    • /
    • 2021
  • In general, domestic streams and rivers are composed of alluvial rivers consisting of sand and gravel beds. These rivers can cause erosion and riverbed changes due to sudden changes in flow rates, such as floods, torrential rains, and heavy rains. In particular, there are various types of erosion, such as contraction erosion caused by changes in river shape, or local erosion occurring around obstacles such as piers, abutments or embankments. In addition, river changes can occur in various forms, such as static or dynamic periods, due to limitations such as flow rate, velocity, and shear stress. This study focused on the erosions of embankments directly related to human casualties among various river structures, and evaluated limit velocities and critical shear stress in order to identify changes in strength of natural materials by identifying the characteristics of natural hoan materials and resistance to erosions. In particular, the limitations of materials according to the type of materials in the river, characteristics of particles, and size of particles were studied using Soil loss, which is a change in the volume of the revetment material, and it is intended to be used as basic data for river design and restoration.