• Title/Summary/Keyword: domain wall velocity

Search Result 52, Processing Time 0.032 seconds

Effects of Synthetic Turbulent Boundary Layer on Fluctuating Pressure on the Wall (합성난류경계층이 벽면에서의 변동압력에 미치는 영향)

  • Yi, Y.W.;Lee, D.S.;Shin, K.K.;Hong, C.S.;Lim, H.C.
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.92-98
    • /
    • 2021
  • Large Eddy Simulation (LES) has been popularly applied and used in the last several decades to simulate turbulent boundary layer in the numerical domain. A fully developed turbulent boundary layer has also been applied to predict the complicated wake flow behind bluff bodies. In this study we aimed to generate an artificial turbulent boundary layer, which is based on an exponential correlation function, and generates a series of realistic three-dimensional velocity data in two-dimensional inlet section which are correlated both in space and in time. The results suggest its excellent capability for high Reynolds number flows. To make an effective generation, a hexahedral mesh has been used and Cholesky decomposition was applied to possess suitable turbulent statistics such as the randomness and correlation of turbulent flow. As a result, the flow characteristics in the domain and fluctuating pressure near the wall are very close to those of fully developed turbulent boundary layers.

A Semi-Implicit Method for the Analysis of Two-Dimensional Fluid Flow with Moving Free Surfaces

  • Lee, Woo-Il;Park, Jong-Sun;Kim, Min-Soo;Lee, Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.720-731
    • /
    • 2002
  • Flow with moving free surfaces is analyzed with an the Eulerian coordinate system. This study proposes a semi-implicit filling algorithm using VOF in which the PLIC (Piecewise Linear Interface Calculation) -type interface reconstruction method and the donor-acceptor-type front advancing scheme are adopted. Also, a new scheme using extrapolation of the stream function is proposed to find the velocity of the node that newly enters the computational domain. The effect of wall boundary conditions on the flow field and temperature field is examined by numerically solving a two-dimensional casting process.

Enhanced impact echo frequency peak by time domain summation of signals with different source receiver spacing

  • Ryden, Nils
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.59-72
    • /
    • 2016
  • The Impact Echo method can be used to measure the thickness of concrete plate like structures. Measurements are based on the identification of a clear thickness resonance frequency which can be difficult in very thick or highly attenuative plates. In this study the detectability of the measured resonant frequency is enhanced by time domain summation of signals with different source receiver spacing. The proposed method is based on the spatial and temporal properties of the first higher symmetric zero group velocity Lamb mode (S1-ZGV) which are described in detail. No application dependent tuning or filtering is needed which makes the method robust and suitable for implementation in automatic IE thickness measurements. The proposed technique is exemplified with numerical data and field data from a thick concrete wall and a highly attenuative asphalt concrete layer.

A numerical study of a confined turbulent wall jet with an external stream

  • Yan, Zhitao;Zhong, Yongli;Cheng, Xu;McIntyre, Rory P.;Savory, Eric
    • Wind and Structures
    • /
    • v.27 no.2
    • /
    • pp.101-109
    • /
    • 2018
  • Wall jet flow exists widely in engineering applications, including the simulation of thunderstorm downburst outflows, and has been investigated extensively by both experimental and numerical methods. Most previous studies focused on the scaling laws and self-similarity, while the effect of lip thickness and external stream height on mean velocity has not been examined in detail. The present work is a numerical study, using steady Reynolds-Averaged Navier Stokes (RANS) simulations at a Reynolds number of $3.5{\times}10^4$, of a turbulent plane wall jet with an external stream to investigate the influence of the wall jet domain on downstream development of the flow. The comparisons of flow characteristics simulated by the Reynolds stress turbulence model closure (Stress-omega, SWRSM) and experimental results indicate that this model may be considered reasonable for simulating the wall jet. The confined wall jet is further analyzed in a parametric study, with the results compared to the experimental data. The results indicate that the height and the width of the wind tunnel and the lip thickness of the jet nozzle have a great effect on the wall jet development. The top plate of the tunnel does not confine the development of the wall jet within 200b of the nozzle when the height of the tunnel is more than 40b (b is the height of jet nozzle). The features of the centerline flow in the mid plane of the 3D numerical model are close to those of the 2D simulated plane wall jet when the width of the tunnel is more than 20b.

Experimental and analytical study on hydroelastic vibration of tank (선박내 접수탱크 진동에 대한 실험/이론적 연구)

  • Kim, Kuk-Su;Cho, H.D.;Kong, Y.M.;Heo, J.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.96-100
    • /
    • 2008
  • In this paper, a experimental and theoretical study is carried out on the hydroelastic vibration for a rectangular bottom and side plate of tank. It is assumed that the tank wall is clamped along the plate edges. The fluid velocity potential is used for the simulation of fluid domain and to obtain the added mass due to plate vibration. It is assumed that the fluid is imcompressible and inviscid. Assumed mode method is utilized to the plate model and hydrodynamic force is obtained by the proposed approach. The coupled natural frequencies are obtained from the relationship between kinetic energies of a wall including fluid and the potential energy of the wall. The theoretical result is compared with the three-dimensional finite element method. In order to verify the result, modal test was carried out for bottom/side plate of tank model by using impact hammer. It was found the fundamental natural frequency of bottom plate is lower than that of side plate of tank and theoretical result was in good agreement with that of commercial three-dimensional finite element program.

  • PDF

Direct simulations on 2D mold-filling processes of particle-filled fluids

  • Hwang, Wook-Ryol;Kim, Worl-Yong;Kang, Shin-Hyun;Kim, See-Jo
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.3
    • /
    • pp.193-200
    • /
    • 2009
  • We present a direct simulation technique for two-dimensional mold-filling simulations of fluids filled with a large number of circular disk-like rigid particles. It is a direct simulation in that the hydrodynamic interaction between particles and fluid is fully considered. We employ a pseudo-concentration method for the evolution of the flow front and the DLM (distributed Lagrangian multipliers)-like fictitious domain method for the implicit treatment of the hydrodynamic interaction. Both methods allow the use of a fixed regular discretization during the entire computation. The discontinuous Galerkin method has been used to solve the concentration evolution equation and the rigid-ring description has been introduced for freely suspended particles. A buffer zone, the gate region of a finite area subject to the uniform velocity profile, has been introduced to put discrete particles into the computational domain avoiding any artificial discontinuity. From example problems of 450 particles, we investigated the particle motion and effects of particles on the flow for both Newtonian and shear-thinning fluid media. We report the prolonged particle movement toward the wall in case of a shear-thinning fluid, which has been interpreted with the shear rate distribution.

SHAPING A NOZZLE WITH A CENTRAL BODY (스파이크 노즐 설계)

  • KIM C. W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.293-298
    • /
    • 2005
  • We calculate the coordinates of an axisymmetric nozzle with a central body. This nozzle ensures a transonic flow with a plane sound surface, which is orthogonal to the symmetry axis and has a wall kink at the sonic point, The Chaplygin transformation in the subsonic part of the flow leads the Dirichlet problem for a system of nonlinear equations. The definition domain of the solution in the velocity-hodograph plane is taken as a rectangle. This enables one to obtain the nozzle with a monotonic distribution of velocity along its subsonic part. In the nonlinear differential equation, the linear Chaplygin operator for plane flows is separated, which allows the iterative calculation of the solution. The supersonic part of the nozzle is calculated under the assumption that the flow at the nozzle exit is uniform and parallel to the symmetry axis; i.e., the supersonic jet outflows to the submerged space with the same pressure. The calculation is performed by the characteristic method. The exact solution of Tricomi equation for near-sonic flows with the straight sonic line is used to 'move away' the sound plane. The velocity distribution alone the supersonic part of the nozzle is also monotonic, which ensures the absence of the boundary-layer separation and, therefore, the adequacy of the ideal-gas model. calculations show that the flow in the supersonic part of the nozzle is continuous (compression shocks are absent)

  • PDF

Numerical Analysis of Thermal Environments and Comfort for Local Air Conditioning System (수치해석에 의한 국부냉방시스템의 온열환경 및 쾌적성 분석)

  • 엄태인;경남호;신기식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.4
    • /
    • pp.318-328
    • /
    • 2003
  • Numerical simulation using computational fluid dynamics (CFD) is performed to calculate the velocities and temperature profiles of air in adjacent to a worker within the individual local air conditioning system. The calculation domain is the space of ㄴ between walls and a worker in the climate room. The fresh air is supplied from the three different inlets located on the right, left and center wall in the climate room. In this study, the calculated data of velocities and temperature profiles of air in the nearest the skin of a worker are used to calculate the PMV (Predicted Mean Vote) for evaluation of thermal comfort of a worker in the local air conditioning system. Because the data of veto-cities temperature profiles of air in adjacent to a worker and the PMV of a worker are the design parameters of the local air conditioning system. The results of calculation show that the fresh air velocity and injection position are closely related to the PMV value. In individual air condition system of ㄴ, the appropriate PMV are obtained when the fresh air velocity and position are 1.0 m/s, throat of a worker and are 1.5 m/s, head of a worker, respectively. The method of numerical calculation is effective to obtain the optimum velocity and position of the fresh air for optimum the PMV and energy saving in individual local air conditioning system.

Study on flow characteristics in LBE-cooled main coolant pump under positive rotating condition

  • Lu, Yonggang;Wang, Zhengwei;Zhu, Rongsheng;Wang, Xiuli;Long, Yun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2720-2727
    • /
    • 2022
  • The Generation IV Lead-cooled fast reactor (LFR) take the liquid lead or lead-bismuth eutectic alloy (LBE) as the coolant of the primary cooling circuit. Combined with the natural characteristics of lead alloy and the design features of LFR, the system is the simplest and the number of equipment is the least, which reflects the inherent safety characteristics of LFR. The nuclear main coolant pump (MCP) is the only power component and the only rotating component in the primary circuit of the reactor, so the various operating characteristics of the MCP are directly related to the safety of the nuclear reactor. In this paper, various working conditions that may occur in the normal rotation (positive rotating) of the MCP and the corresponding internal flow characteristics are analyzed and studied, including the normal pump condition, the positive-flow braking condition and the negative-flow braking condition. Since the corrosiveness of LBE is proportional to the fluid velocity, the distribution of flow velocity in the pump channel will be the focus of this study. It is found that under the normal pump condition and positive-flow braking conditions, the high velocity region of the impeller domain appears at the inlet and outlet of the blade. At the same radius, the pressure surface is lower than the back surface, and with the increase of flow rate, the flow separation phenomenon is obvious, and the turbulent kinetic energy distribution in impeller and diffuser domain shows obvious near-wall property. Under the negative-flow braking condition, there is obvious flow separation in the impeller channel.

ANALYSIS OF TURBULENT BOUNDARY LAYER OF NATURAL CONVECTION CAUSED BY FIRE ALONG VERTICAL WALL (수직벽 화재 자연대류에 의한 난류 경계층 열유동 특성 해석)

  • Jang, Yong-Jun;Kim, Jin-Ho;Ryu, Ji-Min
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.1-10
    • /
    • 2016
  • The analysis of characteristics of turbulent flow and thermal boundary layer for natural convection caused by fire along vertical wall is performed. The 4m-high vertical copper plate is heated and kept at a uniform surface temperature of $60^{\circ}C$ and the surrounding fluid (air) is kept at $16.5^{\circ}C$. The flow and temperature is solved by large eddy simulation(LES) of FDS code(Ver.6), in which the viscous-sublayer flow is calculated by Werner-Wengle wall function. The whole analyzed domain is assumed as turbulent region to apply wall function even through the laminar flow is transient to the turbulent flow between $10^9$<$Gr_z$<$10^{10}$ in experiments. The various grids from $7{\times}7{\times}128$ to $18{\times}18{\times}128$ are applied to investigate the sensitivity of wall function to $x^+$ value in LES simulation. The mean velocity and temperature profiles in the turbulent boundary layer are compared with experimental data by Tsuji & Nagano and the results from other LES simulation in which the viscous-sublayer flow is directly solved with many grids. The relationship between heat transfer rate($Nu_z$) and $Gr_zPr$ is investigated and calculated heat transfer rates are compared with theoretical equation and experimental data.