• Title/Summary/Keyword: domain expression

Search Result 905, Processing Time 0.032 seconds

A Model for AC Characteristics of GaAs MESFET's (GaAs MESFET의 AC특성 모델에 관한 연구)

  • 김창우;김홍배;곽계달
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.2
    • /
    • pp.196-203
    • /
    • 1988
  • A new analytic model for small-singnal circuit model of GaAs MESFET's is presented. This model is a charge model which considers the formation of a statioanary Gunn-domain and the transistion region that exists in the depletion region boundary. From this charge model the analytic expression of the equivalent circuit elements is derived, and the voltage dependences of each element are explained. The results of the calcualtion are in good agreement with experimental data.

  • PDF

Differential regulation of gene expression by RNA polymerase II in response to DNA damage

  • Heo, Jeong-Hwa;Han, Jeung-Whan;Lee, Hyang-Woo;Cho, Eun-Jung
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.219.1-219.1
    • /
    • 2003
  • RNA polymerase II (pol II) is known to cycle between hyperphosphorylated and hypophosphorylated forms during transcription cycle. These extensive phosphorylation/dephosphorylation event occurs in the C-terminal domain (CTD) of the largest subunit of pol II which consists of a tandemly repeated heptapeptide motif with consensus of YSPTSPS. (omitted)

  • PDF

Prostate Apoptosis Response-4 (Par-4) as a Cancer Therapeutic Target (암 치료 표적으로써 prostate apoptosis response-4 (Par-4))

  • Woo, Seon Min;Kwon, Taeg Kyu
    • Journal of Life Science
    • /
    • v.25 no.8
    • /
    • pp.947-952
    • /
    • 2015
  • Prostate apoptosis response-4 (Par-4) was originally identified in androgen-independent prostate cancer cells undergoing apoptosis. Par-4 is ubiquitously expressed in normal cells and tissues, but it is downregulated in several types of cancers. Par-4 is a 38 kDa tumor suppressor protein encoded by the PARW gene. Par-4 promotes apoptosis in a variety of cancerous cells, but not in normal cells. In this review, we focused on the structure, expression and function of Par-4 in apoptotic signaling pathway. Functional domains of Par-4 include two nuclear localization sequences (NLS), a leucine zipper (LZ) domain, a nuclear export sequence (NES) and selective for apoptosis in cancer cell (SAC) domain. Many studies have underlined the importance of Par-4 in preventing cancer development. The activity of Par-4 is differently regulated by localization of intracellular and extracellular Par-4. Intracellular Par-4 inhibits Akt- and NF-κB-mediated cell survival pathways and downregulates Bcl-2 expression. Extracellular Par-4 activates the extrinsic apoptotic pathway by binding to cell surface receptor GRP78, a stress response protein that is in the endoplasmic reticulum (ER). Endogenous Par-4 sensitizes cancer cells to various apoptotic stimuli, while exogenous Par-4 enhances SAC domain-dependent apoptosis in cancer cells, but not normal cells. Therefore, Par-4 is an attractive target for cancer therapy.

Nonstructural NS5A Protein Regulates LIM and SH3 Domain Protein 1 to Promote Hepatitis C Virus Propagation

  • Choi, Jae-Woong;Kim, Jong-Wook;Nguyen, Lap P.;Nguyen, Huu C.;Park, Eun-Mee;Choi, Dong Hwa;Han, Kang Min;Kang, Sang Min;Tark, Dongseob;Lim, Yun-Sook;Hwang, Soon B.
    • Molecules and Cells
    • /
    • v.43 no.5
    • /
    • pp.469-478
    • /
    • 2020
  • Hepatitis C virus (HCV) propagation is highly dependent on cellular proteins. To identify the host factors involved in HCV propagation, we previously performed protein microarray assays and identified the LIM and SH3 domain protein 1 (LASP-1) as an HCV NS5A-interacting partner. LASP-1 plays an important role in the regulation of cell proliferation, migration, and protein-protein interactions. Alteration of LASP-1 expression has been implicated in hepatocellular carcinoma. However, the functional involvement of LASP-1 in HCV propagation and HCV-induced pathogenesis has not been elucidated. Here, we first verified the protein interaction of NS5A and LASP-1 by both in vitro pulldown and coimmunoprecipitation assays. We further showed that NS5A and LASP-1 were colocalized in the cytoplasm of HCV infected cells. NS5A interacted with LASP-1 through the proline motif in domain I of NS5A and the tryptophan residue in the SH3 domain of LASP-1. Knockdown of LASP1 increased HCV replication in both HCV-infected cells and HCV subgenomic replicon cells. LASP-1 negatively regulated viral propagation and thereby overexpression of LASP-1 decreased HCV replication. Moreover, HCV propagation was decreased by wild-type LASP-1 but not by an NS5A binding-defective mutant of LASP-1. We further demonstrated that LASP-1 was involved in the replication stage of the HCV life cycle. Importantly, LASP-1 expression levels were increased in persistently infected cells with HCV. These data suggest that HCV modulates LASP-1 via NS5A in order to regulate virion levels and maintain a persistent infection.

Induction of Deletion Mutation for the Enzymatic Domain in the Shigatoxin2e A Subunit Gene of Esherichila coli O139 Isolates and Expression of Mutated Protein (분리 대장균 O139의 Shigatoxin2e A 유전자의 효소 활성부에 대한 결손변이 유발 및 변이 단백질의 발현)

  • Cho Eun-jung;Kim Do-kyong;Kim Sang-hyun;Kim Yeong-il;Lee Chul-hyun;Lee Woo-won;Son Won-geun;Shin Jong-Uk;Kim Yong-hwan
    • Journal of Veterinary Clinics
    • /
    • v.22 no.4
    • /
    • pp.386-391
    • /
    • 2005
  • This study was done to produce a mutated protein inactivated cytotoxicity of Shigatoxin 2e (Stx2e) of E.coli O139 isolates by deletional mutagenesis of Stx2e A subunit gene encoding active-site cleft of enzymatic domain in ST2e holotoxin. Cytotoxicity of the toxoid expressed from the mutant Stx2e gene was compared with wild type Stx2e for development of vaccine candidate. A recombinant plasmid pED18 containing Stx2e gene ot E.coli O139 isolates was used to generate mutation plasmid. Deletion mutagenesis was conducted for Stx2e A subunit gene encoding enzymatically active domain by polymerase chain reaction (PCR) using ot designed primer to induce deletional mutation. DNA sequence analysis was confirmed that the pentamer (Typ 202- Ser 206) that lies within the proposed active-site cleft in the second region was completely deleted. A DNA fragment of 1.1 kb that encode the new mutant Stx2eA gene was inserted into plasmid pRSET vector digested with EcoRV-Hind III and named pEDSET The PEDSET was transformed in E. coli for expression of mutant protein and the protein was confirmed by SDS-PACE and Western-blotting. The protein expressed by the mutant was tested to confirm the reduction of cytotoxic activities on Vero cell using microcytotoxicity assay compared with wild type Stx2e, the cytotoxicity of deletional mutant protein was at least reduced by 3,000-fold on Vero cell.

Regulation of nsdD Expression in Aspergillus nidulans

  • Han, Kap-Hoon;Han, Kyu-Yong;Kim, Min-Su;Lee, Dong-Beom;Kim, Jong-Hak;Chae, Suhn-Kee;Chae, Keon-Sang;Han, Dong-Min
    • Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.259-261
    • /
    • 2003
  • The nsdD gene has been predicted to encode a GATA type transcription factor with the type IVb zinc finger DNA binding domain functions in activating sexual development of A. nidulans. In several allelic mutants of nsdD producing truncated NsdD polypeptides lacking the C-terminal zinc finger, the transcription level of nsdD gene was greatly increased. Also in an over-expressed mutant, the transcription under its own promoter was reduced. These results suggest that the expression of nsdD is negatively autoregulated. When the nsdD gene was over-expressed, cleistothecia were formed in excess amounts even in the presence of 0.6 M KC1 that inhibited sexual development of the wild type. Northern blot analysis revealed that the expression of nsdD was repressed by 0.6 M KC1. These results strongly suggest that the inhibition of sexual development by salts was carried out via the nsdD involved regulatory network.

Dlx3 and Dlx5 Inhibit Adipogenic Differentiation of Human Dental Pulp Stem Cells

  • Lee, Hye-Lim;Nam, Hyun;Lee, Gene;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.37 no.1
    • /
    • pp.31-36
    • /
    • 2012
  • Dlx3 and Dlx5 are homeobox domain proteins and are well-known regulators of osteoblastic differentiation. Since possible reciprocal relationships between osteogenic and adipogenic differentiation in mesenchymal stem cells exist, we examined the regulatory role of Dlx3 and Dlx5 on adipogenic differentiation using human dental pulp stem cells. Over-expression of Dlx3 and Dlx5 stimulated osteogenic differentiation but inhibited adipogenic differentiation of human dental pulp stem cells. Dlx3 and Dlx5 suppressed the expression of adipogenic marker genes such as $C/EBP{\alpha}$, $PPAR{\gamma}$, aP2 and lipoprotein lipase. Adipogenic stimuli suppressed the mRNA levels of Dlx3 and Dlx5, whereas osteogenic stimuli enhanced the expression of Dlx3 and Dlx5 in 3T3-L1 preadipocytes. These results suggest that Dlx3 and Dlx5 exert a stimulatory effect on osteogenic differentiation of stem cells through the inhibition of adipogenic differentiation as well as direct stimulation.

The novel peptide F29 facilitates the DNA-binding ability of hypoxia-inducible factor-1α

  • Choi, Su-Mi;Park, Hyun-Sung
    • BMB Reports
    • /
    • v.42 no.11
    • /
    • pp.737-742
    • /
    • 2009
  • Hypoxia-inducible factor-$1{\alpha}/{\beta}$ (HIF-$1{\alpha}/{\beta}$) is a heterodimeric transcriptional activator that mediates gene expression in response to hypoxia. HIF-$1{\alpha}$ has been noted as an effective therapeutic target for ischemic diseases such as myocardiac infarction, stroke and cancer. By using a yeast two-hybrid system and a random peptide library, we found a 16-mer peptide named F29 that directly interacts with the bHLH-PAS domain of HIF-$1{\alpha}$. We found that F29 facilitates the interaction of the HIF-$1{\alpha/\beta}$ heterodimer with its target DNA sequence, hypoxia-responsive element (HRE). The transient transfection of an F29-expressing plasmid increases the expression of both an HRE-driven luciferase gene and the endogenous HIF-1 target gene, vascular endothelial growth factor (VEGF). Taken together, we conclude that F29 increases the DNA-binding ability of HIF-$1{\alpha}$, leading to increased expression of its target gene VEGF. Our results suggest that F29 can be a lead compound that directly targets HIF-$1{\alpha}$ and increases its activity.

Expression of Taurine Transporter in Cell Lines and Murine Organs (세포주와 마우스 조직에서 타우린수송체의 발현분석)

  • 김하원;안희창;안혜숙;현진원;이은방
    • Biomolecules & Therapeutics
    • /
    • v.10 no.2
    • /
    • pp.78-84
    • /
    • 2002
  • Taurine (2-ethaneaminosulfonic acid, $^+{NH}_3{CH_2}{CH_2}{SO_3^{-}}$) is endogenous amino acid with functions as modulator of osmoregulation, antioxidation, detoxification, transmembrane calcium transport, and a free radical scavenger in mammalian tissues. Taurine transporter(TAUT) contains 12 transmembrane helices, which are typical of the $Na^+$- and $Cl^-$-dependent transporter gene family, and has been cloned recently from several species and tissues. To analyze the expression of TAUT mRNA, one step RT-PCR was performed from human and mouse cultured cell lines and from various mouse tissues. The primers were designed to encode highly conserved amino acid sequences at the second transmembrane domain and at the fourth and fifth intracellular domains. RT-PCR analysis showed both of the human intestine HT-29 and mouse macrophage RAW264.7 cell lines expressed mRNA of TAUT. To define the expression patterns of the TAUT mRNA in the murine organs, RT-PCR was performed to detect cDNA representing TAUT mRNA from seven different mouse tissues. The TAUT was detected in all of the mouse tissues analyzed such as heart, lung, thymus, kidney, liver, spleen and brain. A large amount of transcript was fecund from heart, liver, spleen, kidney, and brain, while lung contained a very small amount of transcript.

Cloning, Expression, and Characterization of a Thermostable GH51 ${\alpha}-\small{L}$-Arabinofuranosidase from Paenibacillus sp. DG-22

  • Lee, Sun Hwa;Lee, Yong-Eok
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.236-244
    • /
    • 2014
  • The gene encoding ${\alpha}-\small{L}$-arabinofuranosidase (AFase) from Paenibacillus sp. DG-22 was cloned, sequenced, and expressed in Escherichia coli. The AFase gene (abfA) comprises a 1,509 bp open reading frame encoding 502 amino acids with a molecular mass of 56,520 daltons. The deduced amino acid sequence of the gene shows that AbfA is an enzyme consisting of only a catalytic domain, and that the enzyme has significant similarity to AFases classified into the family 51 of the glycosyl hydrolases. abfA was subcloned into the pQE60 expression vector to fuse it with a six-histidine tag and the recombinant AFase (rAbfA) was purified to homogeneity. The specific activity of the recombinant enzyme was 96.7 U/mg protein. Determination of the apparent molecular mass by gel-filtration chromatography indicated that AbfA has a tetrameric structure. The optimal pH and temperature of the enzyme were 6.0 and $60^{\circ}C$, respectively. The enzyme activity was completely inhibited by 1 mM $HgCl_2$. rAbfA was active only towards p-nitrophephenyl ${\alpha}-\small{L}$-arabinofuranoside and exhibited $K_m$ and $V_{max}$ values of 3.5 mM and 306.1 U/mg, respectively. rAbfA showed a synergistic effect in combination with endoxylanase on the degradation of oat spelt xylan and wheat arabinoxylan.