• 제목/요약/키워드: document type classification

검색결과 42건 처리시간 0.024초

Text Classification with Heterogeneous Data Using Multiple Self-Training Classifiers

  • William Xiu Shun Wong;Donghoon Lee;Namgyu Kim
    • Asia pacific journal of information systems
    • /
    • 제29권4호
    • /
    • pp.789-816
    • /
    • 2019
  • Text classification is a challenging task, especially when dealing with a huge amount of text data. The performance of a classification model can be varied depending on what type of words contained in the document corpus and what type of features generated for classification. Aside from proposing a new modified version of the existing algorithm or creating a new algorithm, we attempt to modify the use of data. The classifier performance is usually affected by the quality of learning data as the classifier is built based on these training data. We assume that the data from different domains might have different characteristics of noise, which can be utilized in the process of learning the classifier. Therefore, we attempt to enhance the robustness of the classifier by injecting the heterogeneous data artificially into the learning process in order to improve the classification accuracy. Semi-supervised approach was applied for utilizing the heterogeneous data in the process of learning the document classifier. However, the performance of document classifier might be degraded by the unlabeled data. Therefore, we further proposed an algorithm to extract only the documents that contribute to the accuracy improvement of the classifier.

토픽모델링과 딥 러닝을 활용한 생의학 문헌 자동 분류 기법 연구 (A Study of Research on Methods of Automated Biomedical Document Classification using Topic Modeling and Deep Learning)

  • 육지희;송민
    • 정보관리학회지
    • /
    • 제35권2호
    • /
    • pp.63-88
    • /
    • 2018
  • 본 연구는 LDA 토픽 모델과 딥 러닝을 적용한 단어 임베딩 기반의 Doc2Vec 기법을 활용하여 자질을 선정하고 자질집합의 크기와 종류 및 분류 알고리즘에 따른 분류 성능의 차이를 평가하였다. 또한 자질집합의 적절한 크기를 확인하고 문헌의 위치에 따라 종류를 다르게 구성하여 분류에 이용할 때 높은 성능을 나타내는 자질집합이 무엇인지 확인하였다. 마지막으로 딥 러닝을 활용한 실험에서는 학습 횟수와 문맥 추론 정보의 유무에 따른 분류 성능을 비교하였다. 실험문헌집단은 PMC에서 제공하는 생의학 학술문헌을 수집하고 질병 범주 체계에 따라 구분하여 Disease-35083을 구축하였다. 연구를 통하여 가장 높은 성능을 나타낸 자질집합의 종류와 크기를 확인하고 학습 시간에 효율성을 나타냄으로써 자질로의 확장 가능성을 가지는 자질집합을 제시하였다. 또한 딥 러닝과 기존 방법 간의 차이점을 비교하고 분류 환경에 따라 적합한 방법을 제안하였다.

이질성 학습을 통한 문서 분류의 정확성 향상 기법 (Improving the Accuracy of Document Classification by Learning Heterogeneity)

  • 윌리엄;현윤진;김남규
    • 지능정보연구
    • /
    • 제24권3호
    • /
    • pp.21-44
    • /
    • 2018
  • 최근 인터넷 기술의 발전과 함께 스마트 기기가 대중화됨에 따라 방대한 양의 텍스트 데이터가 쏟아져 나오고 있으며, 이러한 텍스트 데이터는 뉴스, 블로그, 소셜미디어 등 다양한 미디어 매체를 통해 생산 및 유통되고 있다. 이처럼 손쉽게 방대한 양의 정보를 획득할 수 있게 됨에 따라 보다 효율적으로 문서를 관리하기 위한 문서 분류의 필요성이 급증하였다. 문서 분류는 텍스트 문서를 둘 이상의 카테고리 혹은 클래스로 정의하여 분류하는 것을 의미하며, K-근접 이웃(K-Nearest Neighbor), 나이브 베이지안 알고리즘(Naïve Bayes Algorithm), SVM(Support Vector Machine), 의사결정나무(Decision Tree), 인공신경망(Artificial Neural Network) 등 다양한 기술들이 문서 분류에 활용되고 있다. 특히, 문서 분류는 문맥에 사용된 단어 및 문서 분류를 위해 추출된 형질에 따라 분류 모델의 성능이 달라질 뿐만 아니라, 문서 분류기 구축에 사용된 학습데이터의 질에 따라 문서 분류의 성능이 크게 좌우된다. 하지만 현실세계에서 사용되는 대부분의 데이터는 많은 노이즈(Noise)를 포함하고 있으며, 이러한 데이터의 학습을 통해 생성된 분류 모형은 노이즈의 정도에 따라 정확도 측면의 성능이 영향을 받게 된다. 이에 본 연구에서는 노이즈를 인위적으로 삽입하여 문서 분류기의 견고성을 강화하고 이를 통해 분류의 정확도를 향상시킬 수 있는 방안을 제안하고자 한다. 즉, 분류의 대상이 되는 원 문서와 전혀 다른 특징을 갖는 이질적인 데이터소스로부터 추출한 형질을 원 문서에 일종의 노이즈의 형태로 삽입하여 이질성 학습을 수행하고, 도출된 분류 규칙 중 문서 분류기의 정확도 향상에 기여하는 분류 규칙만을 추출하여 적용하는 방식의 규칙 선별 기반의 앙상블 준지도학습을 제안함으로써 문서 분류의 성능을 향상시키고자 한다.

Improving classification of low-resource COVID-19 literature by using Named Entity Recognition

  • Lithgow-Serrano, Oscar;Cornelius, Joseph;Kanjirangat, Vani;Mendez-Cruz, Carlos-Francisco;Rinaldi, Fabio
    • Genomics & Informatics
    • /
    • 제19권3호
    • /
    • pp.22.1-22.5
    • /
    • 2021
  • Automatic document classification for highly interrelated classes is a demanding task that becomes more challenging when there is little labeled data for training. Such is the case of the coronavirus disease 2019 (COVID-19) clinical repository-a repository of classified and translated academic articles related to COVID-19 and relevant to the clinical practice-where a 3-way classification scheme is being applied to COVID-19 literature. During the 7th Biomedical Linked Annotation Hackathon (BLAH7) hackathon, we performed experiments to explore the use of named-entity-recognition (NER) to improve the classification. We processed the literature with OntoGene's Biomedical Entity Recogniser (OGER) and used the resulting identified Named Entities (NE) and their links to major biological databases as extra input features for the classifier. We compared the results with a baseline model without the OGER extracted features. In these proof-of-concept experiments, we observed a clear gain on COVID-19 literature classification. In particular, NE's origin was useful to classify document types and NE's type for clinical specialties. Due to the limitations of the small dataset, we can only conclude that our results suggests that NER would benefit this classification task. In order to accurately estimate this benefit, further experiments with a larger dataset would be needed.

MBTI 조직성격유형화에 따른 기업분류: 기업리뷰 빅데이터를 활용하여 (Firm Classification based on MBTI Organizational Character Type: Using Firm Review Big Data)

  • 이한준;신동원;안병대
    • 아태비즈니스연구
    • /
    • 제12권3호
    • /
    • pp.361-378
    • /
    • 2021
  • Purpose - The purpose of this study is to classify KOSPI listed companies according to their organizational character type based on MBTI. Design/methodology/approach - This study collected 109,989 reviews from an online firm review website, Jobplanet. Using these reviews and the descriptions about organizational character, we conducted document similarity analysis. Doc2Vec technique was hired for the analysis. Findings - First, there are more companies belonging to Extraversion(E), Intuition(N), Feeling(F), and Judging(J) than Introversion(I), Sensing(S), Thinking(T), and Perceiving(P) as organizational character types of MBTI. Second, more companies have EJ and EP as the behavior type and NT and NF as the decision-making type. Third, the top-3 organizational character type of which firms have among 16 types are ENTJ, ENFP, and ENFJ. Finally, companies belonging to the same industry group were found to have similar organizational character. Research implications or Originality - This study provides a noble way to measure organizational character type using firm review big data and document similarity analysis technique. The research results can be practically used for firms in their organizational diagnosis and organizational management, and are meaningful as a basic study for various future studies to empirically analyze the impact of organizational character.

위키피디아를 이용한 분류자질 선정에 관한 연구 (An Experimental Study on Feature Selection Using Wikipedia for Text Categorization)

  • 김용환;정영미
    • 정보관리학회지
    • /
    • 제29권2호
    • /
    • pp.155-171
    • /
    • 2012
  • 텍스트 범주화에 있어서 일반적인 문제는 문헌을 표현하는 핵심적인 용어라도 학습문헌 집합에 나타나지 않으면 이 용어는 분류자질로 선정되지 않는다는 것과 형태가 다른 동의어들은 서로 다른 자질로 사용된다는 점이다. 이 연구에서는 위키피디아를 활용하여 문헌에 나타나는 동의어들을 하나의 분류자질로 변환하고, 학습문헌 집합에 출현하지 않은 입력문헌의 용어를 가장 유사한 학습문헌의 용어로 대체함으로써 범주화 성능을 향상시키고자 하였다. 분류자질 선정 실험에서는 (1) 비학습용어 추출 시 범주 정보의 사용여부, (2) 용어의 유사도 측정 방법(위키피디아 문서의 제목과 본문, 카테고리 정보, 링크 정보), (3) 유사도 척도(단순 공기빈도, 정규화된 공기빈도) 등 세 가지 조건을 결합하여 실험을 수행하였다. 비학습용어를 유사도 임계치 이상의 최고 유사도를 갖는 학습용어로 대체하여 kNN 분류기로 분류할 경우 모든 조건 결합에서 범주화 성능이 0.35%~1.85% 향상되었다. 실험 결과 범주화 성능이 크게 향상되지는 못하였지만 위키피디아를 활용하여 분류자질을 선정하는 방법이 효과적인 것으로 확인되었다.

구문의미 분석을 활용한 복합 문단구분 시스템에 대한 연구 (Research on the Hybrid Paragraph Detection System Using Syntactic-Semantic Analysis)

  • 강원석
    • 한국멀티미디어학회논문지
    • /
    • 제24권1호
    • /
    • pp.106-116
    • /
    • 2021
  • To increase the quality of the system in the subjective-type question grading and document classification, we need the paragraph detection. But it is not easy because it is accompanied by semantic analysis. Many researches on the paragraph detection solve the detection problem using the word based clustering method. However, the word based method can not use the order and dependency relation between words. This paper suggests the paragraph detection system using syntactic-semantic relation between words with the Korean syntactic-semantic analysis. This system is the hybrid system of word based, concept based, and syntactic-semantic tree based detection. The experiment result of the system shows it has the better result than the word based system. This system will be utilized in Korean subjective question grading and document classification.

확장 마크업 언어(XML)를 이용한 정간보 악보 표기법에 관한 연구 (A Study on the Notation of Jeongganbo Score using Extensible Markup Language (XML))

  • 이용주;최근우;박태진;강경옥
    • 한국음향학회지
    • /
    • 제32권5호
    • /
    • pp.446-453
    • /
    • 2013
  • 본 논문에서는 다양한 구조와 기호를 가지는 국악 악보인 정간보를 XML(Extensible Markup Language)을 이용하여 디지털 파일로 저장하는 방법에 대해 제안한다. 이를 위하여 정간보의 구조에 대하여 분석을 하고, 정간보기보에 활용되는 기호를 분류하고, 기호의 사용 형태에 대해 분석을 하였다. 이러한 분석을 기반으로 다양한 정간보의 구조와 기호를 포함하는 정간보 악보 기술 방법을 DTD(Document Type Definition) 로 정의하였다. 제안한 방법의 검증을 위하여, 정간보로 기보된 악보를 제안한 DTD에 따라 XML로 기술하였고, 정간보 악보가 기록된 XML을 해석하고 이를 정간보 형태로 나타내어주는 프로그램을 구현하여, XML로 기술된 정간보 악보가 적절하게 해석되고 정간보 악보 형태로 보여주는 것이 가능함을 보였다.

BIM기반 고속도로 공사 물량산출 신뢰성 검토 및 활용 (Reliability Analysis and Utilization of BIM-based Highway Construction Output Volume)

  • 정국영;우정원;강경돈;신재철
    • 한국BIM학회 논문집
    • /
    • 제3권3호
    • /
    • pp.9-18
    • /
    • 2013
  • In case of applying the BIM method in the civil engineering of irregularly shaped structure, BIM method began to be introduced in the current building engineering area compared with the expected effects of the relatively high construction productivity has been recognized. In this paper, I have developed quantity calculation algorithms applying it to earthwork and bridge construction, tunnel construction, retaining wall construction, culvert construction and implemented BIM based 3D-BIM Modeling quantity calculation. Structure work in which errors occurred in range between -6.28% ~ 5.17%. Especially, understanding of the problem and improvement of the existing 2D-CAD based of quantity calculation through rock type quantity calculation error in range of -14.36% ~ 13.07% of earthwork quantity calculation. It's benefit and applicability of BIM method in civil engineering. In addition, routine method for quantity of earthwork has the same error tolerance negligible for that of structure work. But, rock type's quantity calculated as the error appears significantly to the reliability of 2D-based volume calculation shows that the problem could be. Through the estimating quantity of earthwork based 3D-BIM, proposed method has better reliability than routine method. BIM, as well as the design, construction, maintenance levels of information when you consider the benefits of integration, the introduction of BIM design in civil engineering and the possibility of applying for the effectiveness was confirmed. In addition, as the beginning phase of information integration, quantity document automation program has been developed for activation of BIM. And automatically enter the program code number, linkage and manual volume calculation program, quantity document automation programs, such as the development is now underway, and step-by-step procedures and methods are presented.

분류시스템 개발과정에서의 협력에 대한 연구 (A Study on Collaboration in Classification System Development Practice)

  • 박옥남
    • 한국문헌정보학회지
    • /
    • 제42권4호
    • /
    • pp.181-199
    • /
    • 2008
  • 본 연구는 실제 분류 시스템 개발자들의 행태를 이해하는 데 그 목적이 있다. 이를 위하여, 협력행태를 중심으로 협력의 유형, 협력에 영향을 미치는 요인, 협력이 분류 시스템 개발에 미치는 영향 등을 조사하였다. 또한 협력에 대한 이해가 분류 교육자, 연구자, 개발자에게 제공하는 의의를 논의하였다. 자료는 문헌조사, 현장인터뷰, 관찰법, 이메일의 방법을 통하여 수집되었다. 본 연구는 이미지 분류 시스템 개발팀을 대상으로 조사하였으며 사회과정모델을 연구의 프레임워크로 채택하였다.