• 제목/요약/키워드: docosahexaenoic acids(DHA)

검색결과 193건 처리시간 0.033초

Eicosapentaenoic Acid, Docosahexaenoic Acid 농축어유와 들깨유가 저지방 식이를 섭취한 흰쥐의 지질대사에 미치는 영향 (The Effect of Dietary Concentrated Oils of Eicosapentaenoic Acid, Docosahexaenoic Acid and Perilla Oil on lipid Metabolism in Rata Fed Low Fat Diet)

  • 권순영;정영진
    • Journal of Nutrition and Health
    • /
    • 제34권6호
    • /
    • pp.626-636
    • /
    • 2001
  • To compare the effect of three kinds of n-3 fatty acids-eicosapentaenoic acid(EPA), docosahexaenoic acid(DHA) and perilla oil (PO)-on serum and liver lipid levels and fatty acid composition of liver phospholipid(PL) at low fat level(5%, w/w), 4-weeks old Sprague-Dawley rats were fed with one of five different oil diets for 4 weeks. Beef tallow(BT) and corn oil(CO) was used as control for sturated or n-6 fatty acid respectively. Se겨m concentrations of cholesterol(TC) and phospholipid(PL) were lower in PO DHA and EPA groups than in BT and CO groups. HDL-cholesterol levels were higher in CO and PO groups than in EPA, DHA and BT groups. Liver PL concentrations were higher in DHA and EPA groups than in CO, PO and BT groups, but liver TC and heal PL and TC concentrations did not show any significant difference among groups. Hepatic fatty acid composition of phosphatidylcholine (PC) and phosphatidylethanolamine (PE), two major phospholipids in liver, reflected their dietary fatty acid composition. In PC and PE, total percentage own-6 series was higher in CO group than in any other groups, and that own-3 series was higher in DHA and PO groups than in EPA, CO and BT groups. Moreover, the ratio of 20 : 4/18 : 2 was lower in PO and DHA groups than in EPA, CO and BT groups. On the contrary, the percentage of C22 : 6 was lower in EPA, CO and BT groups than in PO and DHA groups. These results revealed that n-3 series(EPA, DHA and PO) were more effective in lowering um lipids than n-6 fatty acids or saturated fatty acid. Based on the results of fatty acid composition of hepatic phospholipid, we suggest that the dietary effect of PO and DHA on antiatherogenic characteristics seems to be similar extent. In addition, the effect of EPA might not be significantly different from that of BT or CO in the view of eicosanoids production from the precursor fatty acid. These difference of hepatic fatty acid composition might come from other characteristics of dietary oil as well as the type of unsaturation, not from the carbon chain length or the degree of unsaturation of n-3 fatty acid.

  • PDF

Anti-cancer Mechanism of Docosahexaenoic Acid in Pancreatic Carcinogenesis: A Mini-review

  • Park, Mirae;Kim, Hyeyoung
    • Journal of Cancer Prevention
    • /
    • 제22권1호
    • /
    • pp.1-5
    • /
    • 2017
  • Pancreatic cancer is a highly aggressive malignant tumor of the digestive system and radical resection, which is available to very few patients, might be the only possibility for cure. Since therapeutic choices are limited at the advanced stage, prevention is more important for reducing incidence in high-risk individuals with family history of pancreatic cancer. Epidemiological studies have shown that a high consumption of fish oil or ${\omega}3-polyunsaturated$ fatty acids reduces the risk of pancreatic cancers. Dietary fish oil supplementation has shown to suppress pancreatic cancer development in animal models. Previous experimental studies revealed that several hallmarks of cancer involved in the pathogenesis of pancreatic cancer, such as the resistance to apoptosis, hyper-proliferation with abnormal $Wnt/{\beta}-catenin$ signaling, expression of pro-angiogenic growth factors, and invasion. Docosahexaenoic acid (DHA) is a ${\omega}3-polyunsaturated$ fatty acid and rich in cold oceanic fish oil. DHA shows anti-cancer activity by inducing oxidative stress and apoptosis, inhibiting $Wnt/{\beta}-catenin$ signaling, and decreasing extracellular matrix degradation and expression of pro-angiogenic factors in pancreatic cancer cells. This review will summarize anti-cancer mechanism of DHA in pancreatic carcinogenesis based on the recent studies.

13C NMR 분석 및 지방산 분석을 통한 어유의 종류 구분 및 사용 실태에 관한 연구 (A Study on Classification of Fish Oil Types and Its Usage by 13C-NMR Spectra and Fatty Acids Analysis)

  • 조은아;임성준;오태헌;안현주;육수진;최진욱;차윤환;이영상
    • 한국식품영양학회지
    • /
    • 제26권3호
    • /
    • pp.352-357
    • /
    • 2013
  • This study estimates the classification criteria which distinguishes the types of omega-3 health functional foods, fish oils and fish oil usages through $^{13}C$-NMR spectra and fatty acids contents analysis. The major fatty acids of omega-3, eicosapentaenoic acid (EPA, $C_{20:5}$) and docosahexaenoic acid (DHA, $C_{22:6}$) are being analyzed. 10 ethyl ester (EE) forms and 10 triglyceride (TG) forms are the most common types of fish oils for 20 omega-3 products. Gas chromatography (GC) analysis generally shows the matching EPA and DHA contents of the products listed on the notation. But EE form contents of EPA and DHA are higher and are more varied than the TG form. Most of the samples of EPA/DHA ratio show different content ratios of indicated on the products when comparing with standards. The $^{13}C$-NMR analysis of EPA and DHA on sn-1,3 and sn-2 carbonyl peak position with fish oil triglycerides display whether the reconstituted triglycerides (rTG) are being confirmed or not. As a result of the 9 TG form, the 10 TG products showed similar values: EPA sn-1, 3; 13.46~15.66, sn-2; 3.00~4.52, DHA sn-1, 3; 2.43~4.40, sn-2; 3.84~6.36. But one product showed lower contents (EPA: sn-1, 3; 5.88, sn-2; 2.86, DHA sn-1, 3; 2.29, sn-2; 5.95) of EPA, thus it can be considered a different type of oil and only matched six products according to the label. This study is intended to provide basic materials which identify the status for the types and quality of omega-3 fish oil products according to fatty acids profiles and the $^{13}C$-NMR spectrum confirmed the location specificity of EPA and DHA.

Effect of Fish Oils on Brain Fatty Acid Composition and Learning Performance in Rats

  • Lee, Hye-Ju
    • Journal of Nutrition and Health
    • /
    • 제27권9호
    • /
    • pp.901-909
    • /
    • 1994
  • The effects of sardine oil(high in eicosapentaenoic acid : EPA) and tuna oil(high in docosahexaenoic acid : DHA, also high in EPA) on fatty acid composition of brain and learning ability were evaluated in male weanling Sprague-Dawley rats and compared with the effects of corn oil and beef tallow. Animals assigned by randomized block design to one of the four experimental diet groups containing dietary lipid at 15%(w/w) level were given ad libitum for 7 weeks. Food intake and body weight gain of the fish oil groups were significantly lower than those of the corn oil and beef tallow groups. However, brain weights of the groups were not significantly different. In the brain fatty acid composition, the corn oil group showed high concentrations of n-6 fatty acids, the fish oil groups of n-3 fatty acids, and the beef tallow group of saturated fatty acids. Brain EPA and DHA contents of the fish oil groups showed significantly higher than the other groups while the brain ratio of saturated/monounsaturated/polyunsaturated fatty acid was controlled in a narrow range. In a maze test, the fish oil groups appeared to arrive at the goal faster than the corn oil and beef tallow groups. It explained that EPA in diets might efficiently convert to DHA resulting in DHA accumulation in brain tissue and might increase the learning performance as DHA did.

  • PDF

지방산 종류에 따른 Diacylglycerol의 효소적 개질 연구 (Enzymatic modification of diacylglycerol with different type of fatty acids)

  • 이미영;홍순택;이기택
    • 농업과학연구
    • /
    • 제41권2호
    • /
    • pp.141-147
    • /
    • 2014
  • Diacylglycerol-oil (DAG oil) and four kinds of fatty acids [C16:0, C18:0, perillar oil-hydrolyzate(C18:3, 59.7%) and docosahexaenoic acid(DHA, C22:6, 63.7%)] were enzymatically esterified with 1:0.5, 1:1 and 1:1.5 molar ratio (DAG oil: fatty acids) to produce structured DAG. The reaction mixture were catalyzed by addition of sn-1,3 specific Lipozyme RMIM with 10 wt% of total substrates, and reacted for 1, 3, 6 and 24 hr at $62^{\circ}C$ with 220 rpm on the shaking water bath. The produced DAG were analyzed by TLC. In the result, the proportion of each fatty acid [(C16:0, C18:0, perilla oil-hydrolysate(C18:3, 59.7%) and DHA(C22:6, 63.7%)] on DAG products were increased as molar ratios of substrate increased. Among them, DHA showed the least reaction rate in which 24.2 % of DHA was found in the structured DAG molecules after 24 hr reaction with 1:1.5 molar substrate amount ratio.

심질환 환자에서 오메가-3 지방산, 비타민, 킬레이션 요법의 효과 (Effects of omega-3 fatty acids, vitamins, and chelation therapy in patients with heart diseases)

  • 주승재
    • Journal of Medicine and Life Science
    • /
    • 제18권1호
    • /
    • pp.1-10
    • /
    • 2021
  • Omega-3 fatty acids (eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA]) may be beneficial for the primary and secondary prevention of cardiovascular events (CVEs), especially in patients with myocardial infarction or heart failure with reduced ejection fraction. For this purpose, one to two seafood meals per week is preferentially recommended. Omega-3 fatty acids with a high-dose EPA formula (4 g/day) may be more effective than EPA+DHA mixed supplements for the secondary prevention of CVE. Krill oil also contains omega-3 fatty acids, but at a much lower dose compared to fish oil. Supplemental vitamins and minerals have not shown the preventive effects on CVE in prospective, and randomized clinical trials, except for one Chinese study showing the stroke prevention effects of folic acid. The clinical benefit of chelation therapy in reducing CVEs is uncertain.

n-3 지방산이 유방암세포의 증시과 지질과산화 및 Oncogene 발현에 미치는 영향 (Effects of n-3 Fatty Acids on Proliferation of Human Breast Cancer Cells in Relatino to Lipid Peroxidation and Oncogene Expression)

  • 조성희
    • Journal of Nutrition and Health
    • /
    • 제30권8호
    • /
    • pp.987-994
    • /
    • 1997
  • To investigate the effects of n-3 fatty acids on breast cancer, MDA-MB231 human breast cancer cells were cultured in the presence of $\alpha$-linolenic (LNA), eicosapentaenoic(EPA), and docosahexaenoic acid (DHA) at a concentration of 0.5$\mu\textrm{g}$/ml in serum -free IMM medium. Cell growth was monitored and thiobarbituric acid reactive substances (TBARS), $\alpha$-tocopherol contents, and oncogene expression were measured. To compare the effects of n-3 fatty acids with other types of fatty acid, steraic (STA), olieic(OA). linoleic acid(LA) were used. After one day , cell growth was retarded most highly when DHA was in the medium. Cellular TBARS level measured after three days of culture was the highest with DHA in the medium and was also increased by LNA and EPA, compared with STA, OA and LA. Alpha-tocoopherol contents of cells were decreased by DHA but only modestly. There was non significant difference in $\alpha$-tocopherol contents in cells cultured in the presence of the other fatty acids. northern blot hybridization carried out with cells cultured during 24 hours showed that levels of erbB-2 mRNA were not altered by six different fatty acids in the medium but those of c-myc were transiently decreased in the early period by both n-6 and n-3 polyunsaturated fatty acids. The level of tumor suppressor gen p53 mRNA , however, was increased by DHA with time. It is concluded that the cytotoxicity of lipid peroxide and increased expression of tumor suppressor gene p53 are at least partly responsible for the inhibitory effect of DHA on growth of breast cancer cells.

  • PDF

Ethyl Docosahexaenoate and Its Acidic Form Increase Bone Formation by Induction of Osteoblast Differentiation and Inhibition of Osteoclastogenesis

  • Choi, Bo-Yun;Eun, Jae-Soon;Nepal, Manoj;Lee, Mi-Kyung;Bae, Tae-Sung;Kim, Byung-Il;Soh, Yun-Jo
    • Biomolecules & Therapeutics
    • /
    • 제19권1호
    • /
    • pp.70-76
    • /
    • 2011
  • Bone remodeling is a dynamic process involving a constant balance between osteoclast-induced bone resorption and osteoblast-induced bone formation. Osteoclasts play a crucial homeostatic role in skeletal modeling and remodeling, and destroy bone in many pathological conditions. Previously, we reported that the hexane soluble fraction of Ficus carica inhibited osteoclast differentiation. Poly unsaturated fatty acids, such as ethyl docosahexaenoate (E-DHA), docosahexaenoic acid (DHA), cis-11,14-eicosadienoic acid (EDA) and eicosapentaenoic acid (EPA), were identified from the hexane soluble fraction of Ficus carica. Among them, E-DHA most potently inhibited osteoclastogenesis in RAW264.7 cells. E-DHA reduced the activities of JNK and NF-$\kappa}B$. E-DHA suppressed the expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1). Interestingly, DHA increased the activity of alkaline phosphatase and expression of bone morphogenetic protein 2 (BMP2) more than E-DHA in MC3T3-E1 cells, suggesting that DHA may induce osteoblast differentiation. The data suggests that a combination of E-DHA and DHA has potential use in the treatment of diseases involving abnormal bone lysis, such as osteoporosis, rheumatoid arthritis and periodontal bone erosion.

양식과정 중 고등어의 일반성분과 지방산 조성의 변화 (Changes in the Proximate and Fatty Acid Compositions of Chub Mackerel, Scomber japonicus Muscle during Cultivation)

  • 문수경;김인수;홍석남;임동훈;정보영
    • 한국수산과학회지
    • /
    • 제43권6호
    • /
    • pp.589-597
    • /
    • 2010
  • Monthly changes in the proximate and fatty acid compositions of chub mackerel (Scomber japonicus) muscle during cultivation from October 2007 to September 2008 were investigated. The lipid content increased gradually from the first stage of cultivation until March 2008 and then dramatically until May, before decreasing. The highest lipid content during cultivation was 21.6% in May, just before the fish spawns. There was a negative correlation (y=-1.1585x+87.741, $R^2$=0.9495) between the lipid and moisture contents during cultivation of chub mackerel. By contrast, the protein ($18.6{\pm}1.05%$) and ash ($1.18{\pm}0.11%$) contents were essentially unchanged during cultivation. Prominent fatty acids in chub mackerel muscle were 16:0, 18:0, 14:0 saturates, 18:1n-9, 16:1n-7, 18:1n-7 monoenes, and 22:6n-3 (docosahexaenoic acid, DHA), 20:5n-3 (eicosapentaenoic acid, EPA), and 18:2n-6 polyenes. The percentages of n-3 polyunsaturated fatty acids (PUFA), such as DHA and EPA, were higher during three months in the early stage of cultivation than they were subsequently. However, the PUFA (DHA+EPA) content (in mg/100 g of muscle) was lower in the early stage (740-796 mg/100 g muscle) than in the other stages. The highest PUFA (DHA+EPA) content was from April to May (2,749-2751 mg/100 g muscle). The PUFA content was positively correlated with the total lipid content of chub mackerel muscle during cultivation. The results indicate that cultured chub mackerel is a very good source of n-3 PUFA, such as DHA and EPA.

Role of n-3 long-chain polyunsaturated fatty acids in human nutrition and health: review of recent studies and recommendations

  • Dael, Peter Van
    • Nutrition Research and Practice
    • /
    • 제15권2호
    • /
    • pp.137-159
    • /
    • 2021
  • Long-chain (LC) n-3 polyunsaturated fatty acids (n-3 PUFAs), in particular docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), are nutrients involved in many metabolic and physiological processes, and are referred to as n-3 LCPUFA. They have been extensively studied for their effects in human nutrition and health. This paper provides an overview on metabolism, sources, dietary intake, and status of n-3 LCPUFA. A summary of the dietary recommendations for n-3 LCPUFAs for different age groups as well as specific physiological conditions is provided. Evidence for n-3 LCPUFA in cardiovascular diseases, including new studies, is reviewed. Expert recommendations generally support a beneficial effect of n-3 LCPUFA on cardiovascular health and recommend a daily intake of 500 mg as DHA and EPA, or 1-2 servings of fish per week. The role of n-3 LCPUFA on brain health, in particular neurodegenerative disorders and depression, is reviewed. The evidence for beneficial effects of n-3 LCPUFA on neurodegenerative disorders is non-conclusive despite mechanistic support and observational data. Hence, no definite n-3 LCPUFA expert recommendations are made. Data for the beneficial effect of n-3 LCPUFA on depression are generally compelling. Expert recommendations have been established: 200-300 mg/day for depression; up to 1-2 g/day for major depressive disorder. Recent studies support a beneficial role of n-3 LCPUFAs in reducing the risk for premature birth, with a daily intake of 600-800 mg of DHA during pregnancy. Finally, international experts recently reviewed the scientific evidence on DHA and arachidonic acid (ARA) in infant nutrition and concluded that the totality of data support that infant and follow-on formulas should provide both DHA and ARA at levels similar to those in breast milk. In conclusion, the available scientific data support that dietary recommendations for n-3 LCPUFA should be established for the general population and for subjects with specific physiological conditions.