• Title/Summary/Keyword: division of matrices

Search Result 154, Processing Time 0.024 seconds

Data analysis for improving population management in animal shelters in Seoul

  • Cho, Yoon Ju;Lee, Young-Ah;Hwang, Bo Ram;Kim, Hyung Joon;Han, Jin Soo
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.2
    • /
    • pp.125-131
    • /
    • 2015
  • A total of 11,395 animals were impounded in shelters in Seoul in 2013. The Animal Protection Division of the Seoul metropolitan government has annual contracts with local veterinary associations as well as Korean animal rescue and management organizations for providing shelter to animals, and collects monthly statistics from these groups. In 2013, the collected intake and outcome data for 25 districts were reviewed to analyze shelter capacity in terms of housing capacity (monthly daily average intake, required holding capacity, and adoption-driven capacity), staff capacity (staff hours required for daily care), and live release rate. Seasonal variations in the monthly daily average intake were observed, indicating that management of these shelters requires various strategies. This study was performed to analyze and interpret meaningful statistics for improving the efficiency of animal shelters in Seoul. However, inconsistent collection of animal statistics limited data compilation. Creation of a basic animal statistics matrix with reference to well-designed matrices from recognized professional animal shelters is essential. These complied statistical data will help plan for future animal shelter needs in Seoul.

Research on Facility Layout of Prefabricated Building Construction Site

  • Yang, Zhehui;Lu, Ying;Zhang, Xing;Sun, Mingkang;Shi, Yufeng
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.42-51
    • /
    • 2017
  • Due to the high degree of mechanization and the good environmental benefits, the prefabricated buildings are being promoted in China. The construction site layout of the prefabricated buildings has important influence on its safety benefit. However, few scholars have studied the safety problem on it. Firstly, in order to give a follow-up study foreshadowing the characteristics of prefabricated buildings are analyzed, the research assumptions are given and three types of safety buffers are established. And then a mult-objective model for the prefabricated buildings site layout is presented: taking into account the limits of noise, the coverage of the tower crane and the possibility of exceeding boundaries and overlapping, the constraints are and designed established respectively; Based on the improved System Layout Planning (SLP) method, the efficiency\cost\safety interaction matrices among the facilities are also founded for objective function. For the sake of convenience, a hypothetical facility layout case of the prefabricated building is used, the optimal solution of that is obtained in MATLAB with particle swarm algorithm (PSO), which proves the effectiveness of the model presented in this paper.

  • PDF

System identification of a super high-rise building via a stochastic subspace approach

  • Faravelli, Lucia;Ubertini, Filippo;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • v.7 no.2
    • /
    • pp.133-152
    • /
    • 2011
  • System identification is a fundamental step towards the application of structural health monitoring and damage detection techniques. On this respect, the development of evolved identification strategies is a priority for obtaining reliable and repeatable baseline modal parameters of an undamaged structure to be adopted as references for future structural health assessments. The paper presents the identification of the modal parameters of the Guangzhou New Television Tower, China, using a data-driven stochastic subspace identification (SSI-data) approach complemented with an appropriate automatic mode selection strategy which proved to be successful in previous literature studies. This well-known approach is based on a clustering technique which is adopted to discriminate structural modes from spurious noise ones. The method is applied to the acceleration measurements made available within the task I of the ANCRiSST benchmark problem, which cover 24 hours of continuous monitoring of the structural response under ambient excitation. These records are then subdivided into a convenient number of data sets and the variability of modal parameter estimates with ambient temperature and mean wind velocity are pointed out. Both 10 minutes and 1 hour long records are considered for this purpose. A comparison with finite element model predictions is finally carried out, using the structural matrices provided within the benchmark, in order to check that all the structural modes contained in the considered frequency interval are effectively identified via SSI-data.

Simulative Investigation of Spectral Amplitude Coding Based OCDMA System Using Quantum Logic Gate Code with NAND and Direct Detection Techniques

  • Sharma, Teena;Maddila, Ravi Kumar;Aljunid, Syed Alwee
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.531-540
    • /
    • 2019
  • Spectral Amplitude Coding Optical Code Division Multiple Access (SAC OCDMA) is an advanced technique in asynchronous environments. This paper proposes design and implementation of a novel quantum logic gate (QLG) code, with code construction algorithm generated without following any code mapping procedures for SAC system. The proposed code has a unitary matrices property with maximum overlap of one chip for various clients and no overlaps in spectra for the rest of the subscribers. Results indicate that a single algorithm produces the same length increment for codes with weight greater than two and follows the same signal to noise ratio (SNR) and bit error rate (BER) calculations for a higher number of users. This paper further examines the performance of a QLG code based SAC-OCDMA system with NAND and direct detection techniques. BER analysis was carried out for the proposed code and results were compared with existing MDW, RD and GMP codes. We demonstrate that the QLG code based system performs better in terms of cardinality, which is followed by improved BER. Numerical analysis reveals that for error free transmission (10-9), the suggested code supports approximately 170 users with code weight 4. Our results also conclude that the proposed code provides improvement in the code construction, cross-correlation and minimization of noises.

A STUDY ON NUMERICAL SIMULATION OF TOWED LOW-TENSION CABLE WITH NONUNIFORM CHARACTERISTICS (불균일 단면을 갖는 저장력 예인케이블에 관한 수치해석적 연구)

  • Jung, Dong-Ho;Park, Han-Il
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.161-166
    • /
    • 2002
  • Low-tension cables have been increasingly used in recent years due to deep-sea developments and the advent of synthetic cables. In the case of low-tension cables, large displacements may happen due to relatively small restoring forces of tension and thus the effects of fluid and geometric non-linearities become predominant. In this study, three-dimensional (3-D) dynamic behavior of a towed low-tension cable with non-uniform characteristics is numerically analyzed by considering fluid and geometric non-linearities and bending stiffness. A Fortran program is developed by employing a finite difference method. In the algorithm, an implicit time integration and Newton-Raphson iteration are adopted. For the calculation of huge size of matrices, block tri-diagonal matrix method is applied, which is much faster than the well-known Gauss-Jordan method in two point boundary value problems. Some case studies are carried out and the results of numerical simulations are compared with a in-house program of WHOI Cable with good agreements.

  • PDF

Spectral encapsulation of OFDM systems based on orthogonalization for short packet transmission

  • Kim, Myungsup;Kwak, Do Young;Kim, Ki-Man;Kim, Wan-Jin
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.859-871
    • /
    • 2020
  • A spectrally encapsulated (SE) orthogonal frequency-division multiplexing (OFDM) precoding scheme for wireless short packet transmission, which can suppress the out-of-band emission (OoBE) while maintaining the advantage of the cyclic prefix (CP)-OFDM, is proposed. The SE-OFDM symbol consists of a prefix, an inverse fast Fourier transform (IFFT) symbol, and a suffix generated by the head, center, and tail matrices, respectively. The prefix and suffix play the roles of a guard interval and suppress the OoBE, and the IFFT symbol has the same size as the discrete Fourier transform symbol in the CP-OFDM symbol and serves as an information field. Specifically, as the center matrix generating the IFFT symbol is orthogonal, data and pilot symbols can be allocated to any subcarrier without distinction. Even if the proposed precoder is required to generate OFDM symbols with spectral efficiency in the transmitter, a corresponding decoder is not required in the receiver. The proposed scheme is compared with CP-OFDM in terms of spectrum, OoBE, and bit-error rate.

Bandwidth-Efficient Selective Retransmission for MIMO-OFDM Systems

  • Zia, Muhammad;Kiani, Tamoor;Saqib, Nazar A.;Shah, Tariq;Mahmood, Hasan
    • ETRI Journal
    • /
    • v.37 no.1
    • /
    • pp.66-76
    • /
    • 2015
  • In this work, we propose an efficient selective retransmission method for multiple-input and multiple-output (MIMO) wireless systems under orthogonal frequency-division multiplexing (OFDM) signaling. A typical received OFDM frame may have some symbols in error, which results in a retransmission of the entire frame. Such a retransmission is often unnecessary, and to avoid this, we propose a method to selectively retransmit symbols that correspond to poor-quality subcarriers. We use the condition numbers of the subcarrier channel matrices of the MIMO-OFDM system as a quality measure. The proposed scheme is embedded in the modulation layer and is independent of conventional hybrid automatic repeat request (HARQ) methods. The receiver integrates the original OFDM and the punctured retransmitted OFDM signals for more reliable detection. The targeted retransmission results in fewer negative acknowledgements from conventional HARQ algorithms, which results in increasing bandwidth and power efficiency. We investigate the efficacy of the proposed method for optimal and suboptimal receivers. The simulation results demonstrate the efficacy of the proposed method on throughput for MIMO-OFDM systems.

Multiple Attribute Group Decision Making Problems Based on Fuzzy Number Intuitionistic Fuzzy Information

  • Park, Jin-Han;Kwun, Young-Chel;Park, Jong-Seo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.265-272
    • /
    • 2009
  • Fuzzy number intuitionistic fuzzy sets (FNIFSs), each of which is characterized by a membership function and a non-membership function whose values are trigonometric fuzzy number rather than exact numbers, are a very useful means to describe the decision information in the process of decision making. Wang [10] developed some arithmetic aggregation operators, such as the fuzzy number intuitionistic fuzzy weighted averaging (FIFWA) operator, the fuzzy number intuitionistic fuzzy ordered weighted averaging (FIFOWA) operator and the fuzzy number intuitionistic fuzzy hybrid aggregation (FIFHA) operator. In this paper, based on the FIFHA operator and the FIFWA operator, we investigate the group decision making problems in which all the information provided by the decision-makers is presented as fuzzy number intuitionistic fuzzy decision matrices where each of the elements is characterized by fuzzy number intuitionistic fuzzy numbers, and the information about attribute weights is partially known. An example is used to illustrate the applicability of the proposed approach.

Optimized BD-ZF Precoder for Multiuser MIMO-VFDM Cognitive Transmission

  • Yao, Rugui;Xu, Juan;Li, Geng;Wang, Ling
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.291-301
    • /
    • 2016
  • In this paper, we study an optimized block-diagonal zero-forcing (BD-ZF) precoder in a two-tiered cognitive network consisting of a macro cell (MC) and a small cell (SC). By exploiting multiuser multiple-input and multiple-output Vandermonde-subspace frequency-division multiplexing (VFDM) transmission, a cognitive SC can coexist with an MC. We first devise a cross-tier precoder based on the idea of VFDM to cancel the interference from the SC to the MC. Then, we propose an optimized BD-ZF intra-tier precoder (ITP) to suppress multiuser interference and maximize the throughput in the SC. In the case where the dimension of a provided null space is larger than that required by the BD-ZF ITP, the optimized BD-ZF ITP can collect all limited channel gain by optimizing rotating and selecting matrices. Otherwise, the optimized BD-ZF ITP is validated to be equivalent to the conventional BD-ZF ITP in terms of throughput. Numerical results are presented to demonstrate the throughput improvement of the proposed optimized BD-ZF ITP and to discover the impact of imperfect channel state information.

Identification of Differentially Expressed Genes Using Tests Based on Multiple Imputations

  • Kim, Sang Cheol;Yu, Donghyeon
    • Quantitative Bio-Science
    • /
    • v.36 no.1
    • /
    • pp.23-31
    • /
    • 2017
  • Datasets from DNA microarray experiments, which are in the form of large matrices of expression levels of genes, often have missing values. However, the existing statistical methods including the principle components analysis (PCA) and Hotelling's t-test are not directly applicable for the datasets having missing values due to the fact that they assume the observed dataset is complete in general. Many methods have been proposed in previous literature to impute the missing in the observed data. Troyanskaya et al. [1] study the k-nearest neighbor (kNN) imputation, Kim et al. [2] propose the local least squares (LLS) method and Rubin [3] propose the multiple imputation (MI) for missing values. To identify differentially expressed genes, we propose a new testing procedure when the missing exists in the observed data. The proposed procedure uses the Stouffer's z-scores and combines the test results of individual imputed samples, which are dependent to each other. We numerically show that the proposed test procedure based on MI performs better than the existing test procedures based on single imputation (SI) by comparing their ROC curves. We apply the proposed method to analyzing a public microarray data.