• Title/Summary/Keyword: divide-by N

Search Result 75, Processing Time 0.033 seconds

Square-and-Divide Modular Exponentiation (제곱-나눗셈 모듈러 지수연산법)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.4
    • /
    • pp.123-129
    • /
    • 2013
  • The performance and practicality of cryptosystem for encryption, decryption, and primality test are primarily determined by the implementation efficiency of the modular exponentiation of $a^b$ (mod m). To compute $a^b$ (mod m), the standard binary squaring (square-and-multiply) still seems to be the best choice. However, in large b bits, the preprocessed n-ary, ($n{\geq}2$ method could be more efficient than binary squaring method. This paper proposes a square-and-divide and unpreprocessed n-ary square-and-divide modular exponentiation method. Results confirmed that the square-and-divide method is the most efficient of trial number in a case where the value of b is adjacent to $2^k+2^{k-1}$ or to. $2^{k+1}$. It was also proved that for b out of the beforementioned range, the unpreprocessed n-ary square-and-divide method yields higher efficiency of trial number than the general preprocessed n-ary method.

A STUDY OF SUBDIVISION METHOD TO THREE AND FIVE SIDED FACES BASED ON REGULAR POLYGON

  • Muraki, Yuta;Konno, Kouichi;Tokuyama, Yoshimasa
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.551-556
    • /
    • 2009
  • 3-D CAD (Computer Aided Design) system is an indispensable tool for manufacturing. A lot of engineers have studied for the methods to generate a curved surface on an N-sided shape, which is the basic technology of 3-D CAD systems. This surface generation, however, has three problems on the case of long and narrow shapes: the resultant surface is distorted, the surface is not continuous to adjacent surfaces, or additional user inputs are required to generate the surface. Conventional methods have not yet solved these problems at the same time. In this paper, we propose the method to generate internal curves that divide a long and narrow shape into regular N-sided sections so as to divide the shape into an N-sided section and four-sided ones. Our method controls the shape of internal curves by dividing an N-sided long and narrow shape into an N-sided section and four-sided ones, and solves distortion of the generated curved surface. In addition, each of the generated sections is interpolated with G1-continuous surfaces. This process does not require any user's further input. Therefore, the three problems mentioned above will be solved at the same time.

  • PDF

Efficient All-to-All Personalized Communication Algorithms in Wormhole Networks (웜홀 방식 망에서의 효율적인 완전교환 통신 알고리즘)

  • Kim, Si-Gwan;Maeng, Seung-Ryoul;Cho, Jung-Wan
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.5
    • /
    • pp.464-474
    • /
    • 2000
  • All-to-all personalized communication, or complete exchange, is at the heart of numerous applications, such as matrix transposition, fast Fourier Transform(FFT), and distributed table lookup.We present an efficient all-to-all personalized communication algorithm for a 2D torus inwormhole-routed networks. Our complete exchange algorithm adopts divide-and-conquer approach toreduce the number of start-up latency significantly, which is a good metric for network performancein wormhole networks. First, we divide the whole network into 2x2 basic cells, After speciallydesignated nodes called master nodes have collected messages to transmit to the rest of the basic cell,only master nodes perform complete exchange with reduced network size, N/2 x N/2. When finishedwith this complete exchange in master nodes, these nodes distribute messages to the rest of the masternode, which results in the desired complete exchange communication. After we present our algorithms,we analyze time complexities and compare our algorithms with several previous algorithms. And weshow that our algorithm is efficient by a factor of 2 in the required start-up time which means thatour algorithm is suitable for wormhole-routed networks.

  • PDF

ON THE IDEAL CLASS GROUPS OF REAL ABELIAN FIELDS

  • Kim, Jae Moon
    • Korean Journal of Mathematics
    • /
    • v.4 no.1
    • /
    • pp.45-49
    • /
    • 1996
  • Let $F_0$ be the maximal real subfield of $\mathbb{Q}({\zeta}_q+{\zeta}_q^{-1})$ and $F_{\infty}={\cup}_{n{\geq}0}F_n$ be its basic $\mathbb{Z}_p$-extension. Let $A_n$ be the Sylow $p$-subgroup of the ideal class group of $F_n$. The aim of this paper is to examine the injectivity of the natural $mapA_n{\rightarrow}A_m$ induced by the inclusion $F_n{\rightarrow}F_m$ when $m>n{\geq}0$. By using cyclotomic units of $F_n$ and by applying cohomology theory, one gets the following result: If $p$ does not divide the order of $A_1$, then $A_n{\rightarrow}A_m$ is injective for all $m>n{\geq}0$.

  • PDF

An Empirical Study on the Factors and Resolution Methods of the Smart Divide of Older Adults (노년층의 스마트 정보격차 요인 및 해소방안에 관한 실증적 연구)

  • Paek, Kihun;Bong, Jinsook;Shin, Yongtae
    • Journal of KIISE
    • /
    • v.42 no.10
    • /
    • pp.1207-1221
    • /
    • 2015
  • This research was conducted both to analyze the determining factors of and to suggest resolution methods for the smart divide of adults over 65 years of age in the rapidly aging society of the 2000s and the smart society of the 2010s following the information society of the 1990s. The research model based on the Technology Acceptance Model (TAM) includes 6 determining factors derived from existing studies: Self Efficacy, Training, Accessibility, Playfulness, Cost Rationality, and Policy Support. Research data were collected through a survey given to a total of 243 older adults in 14 Senior Welfare Centers nationwide, and research hypotheses were verified by structural equation model (SEM) analysis. The results of this research that gives priority to the order of Political Support, Playfulness, Self Efficacy, Accessibility, Cost Rationality, and Training can be used to develop various resolution methods for the smart divide of adults over 65 years of age.

A CMOS Frequency Synthesizer Block for MB-OFDM UWB Systems

  • Kim, Chang-Wan;Choi, Sang-Sung;Lee, Sang-Gug
    • ETRI Journal
    • /
    • v.29 no.4
    • /
    • pp.437-444
    • /
    • 2007
  • A CMOS frequency synthesizer block for multi-band orthogonal frequency division multiplexing ultra-wideband systems is proposed. The proposed frequency synthesizer adopts a double-conversion architecture for simplicity and to mitigate spur suppression requirements for out-of-band interferers in 2.4 and 5 GHz bands. Moreover, the frequency synthesizer can consist of the fewest nonlinear components, such as divide-by-Ns and a mixer with the proposed frequency plan, leading to the generation of less spurs. To evaluate the feasibility of the proposed idea, the frequency synthesizer block is implemented in 0.18-${\mu}m$ CMOS technology. The measured sideband suppression ratio is about 32 dBc, and the phase noise is -105 dBc/Hz at an offset of 1 MHz. The fabricated chip consumes 17.6 mA from a 1.8 V supply, and the die-area including pads is $0.9{\times}1.1\;mm^2$.

  • PDF

Modeling Large S-System using Clustering and Genetic Algorithm

  • Jung, Sung-Won;Lee, Kwang-H.;Lee, Co-Heon
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.197-201
    • /
    • 2005
  • When we want to find out the regulatory relationships between genes from gene expression data, dimensionality is one of the big problem. In general, the size of search space in modeling the regulatory relationships grows in O(n$^2$) while the number of genes is increasing. However, hopefully it can be reduced to O(kn) with selected k by applying divide and conquer heuristics which depend on some assumptions about genetic network. In this paper, we approach the modeling problem in divide-and-conquer manner. We applied clustering to make the problem into small sub-problems, then hierarchical model process is applied to those small sub-problems.

  • PDF

Divide and conquer algorithm for a voronoi diagram of simple curves

  • Kim, Deok-Soo;Hwang, Il-Kyu;Park, Bum-Joo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1994.04a
    • /
    • pp.691-700
    • /
    • 1994
  • Voronoi diagram of a set of geometric entities on a plane such as points, line segments, or arcs is a collection of Voronoi polygons associated with each entity, where Voronoi polygon of an entity is a locus of point which is closer to the associated entity than any other entity. Voronoi diagram is one of the most fundamental geometrical construct and well-known for its theoretical elegance and the wealth of applications. Various geometric problems can be solved with the aid of Voronoi diagram. For example, the maximum tool diameter of a milling cutter for rough cutting in a pocket can be easily found, and the pocketing tool path can be efficiently generated from Voronoi diagram. In PCB design, the design rule checking can be easily done via Voronoi diagram, too. This paper discusses an algorithm to construct Voronoi diagram of a simple polygon which consists of simple curves such as line segments as well as arcs in a plane with O(nlogn) time complexity by employing the divide and conquer scheme.

A Study on the Diagnostic Model of Cross-national Digital Divide (국가간 정보격차 진단 모형 개발에 관한 연구)

  • Lee, Hohyung
    • Journal of Information Technology and Architecture
    • /
    • v.11 no.1
    • /
    • pp.99-111
    • /
    • 2014
  • Today, through developing country's Official Development Assistance (ODA) project, Republic of Korea is giving help in establishing communication networks, furnishing PCs and etc, as a help of information base expansion. And to resolve digital divide between countries, Republic of Korea's IT service group dispatch business has also significantly contributed to enhance information application level of developing countries. The conclusion and suggestion of this study is as follow. It is obvious that utilization of information can be affected by capability improvement of developing country's informatization level. However, developing informatization strategy level and environment in long term wise will cause greater influence than to raise immediate informatization base level. Overall, settlement of long term digital divide seems possible when we elevate developing countries' informatization strategy level and environment.

A Variable Latency Goldschmidt's Floating Point Number Divider (가변 시간 골드스미트 부동소수점 나눗셈기)

  • Kim Sung-Gi;Song Hong-Bok;Cho Gyeong-Yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.380-389
    • /
    • 2005
  • The Goldschmidt iterative algorithm for a floating point divide calculates it by performing a fixed number of multiplications. In this paper, a variable latency Goldschmidt's divide algorithm is proposed, that performs multiplications a variable number of times until the error becomes smaller than a given value. To calculate a floating point divide '$\frac{N}{F}$', multifly '$T=\frac{1}{F}+e_t$' to the denominator and the nominator, then it becomes ’$\frac{TN}{TF}=\frac{N_0}{F_0}$'. And the algorithm repeats the following operations: ’$R_i=(2-e_r-F_i),\;N_{i+1}=N_i{\ast}R_i,\;F_{i+1}=F_i{\ast}R_i$, i$\in${0,1,...n-1}'. The bits to the right of p fractional bits in intermediate multiplication results are truncated, and this truncation error is less than ‘$e_r=2^{-p}$'. The value of p is 29 for the single precision floating point, and 59 for the double precision floating point. Let ’$F_i=1+e_i$', there is $F_{i+1}=1-e_{i+1},\;e_{i+1}',\;where\;e_{i+1}, If '$[F_i-1]<2^{\frac{-p+3}{2}}$ is true, ’$e_{i+1}<16e_r$' is less than the smallest number which is representable by floating point number. So, ‘$N_{i+1}$ is approximate to ‘$\frac{N}{F}$'. Since the number of multiplications performed by the proposed algorithm is dependent on the input values, the average number of multiplications per an operation is derived from many reciprocal tables ($T=\frac{1}{F}+e_t$) with varying sizes. 1'he superiority of this algorithm is proved by comparing this average number with the fixed number of multiplications of the conventional algorithm. Since the proposed algorithm only performs the multiplications until the error gets smaller than a given value, it can be used to improve the performance of a divider. Also, it can be used to construct optimized approximate reciprocal tables. The results of this paper can be applied to many areas that utilize floating point numbers, such as digital signal processing, computer graphics, multimedia, scientific computing, etc