• Title/Summary/Keyword: divergence instability

Search Result 53, Processing Time 0.026 seconds

Visualization of Dynamic Simulation Data for Power System Stability Assessment

  • Song, Chong-Suk;Jang, Gil-Soo;Park, Chang-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.484-492
    • /
    • 2011
  • Power system analyses, which involve the handling of massive data volumes, necessitate the use of effective visualization methods to facilitate analysis and assist the user in obtaining a clear understanding of the present state of the system. This paper introduces an interface that compensates for the limitations of the visualization modules of dynamic security assessment tools, such as PSS/e and TSAT, for power system variables including generator rotor angle and frequency. The compensation is made possible through the automatic provision of dynamic simulation data in visualized and tabular form for better data intuition, thereby considerably reducing the redundant manual operation and time required for data analysis. The interface also determines whether the generators are stable through a generator instability algorithm that scans simulation data and checks for an increase in swing or divergence. The proposed visualization methods are applied to the dynamic simulation results for contingencies in the Korean Electric Power Corporation system, and have been tested by power system researchers to verify the effectiveness of the data visualization interface.

Free and transient responses of linear complex stiffness system by Hilbert transform and convolution integral

  • Bae, S.H.;Cho, J.R.;Jeong, W.B.
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.753-771
    • /
    • 2016
  • This paper addresses the free and transient responses of a SDOF linear complex stiffness system by making use of the Hilbert transform and the convolution integral. Because the second-order differential equation of motion having the complex stiffness give rise to the conjugate complex eigen values, its time-domain analysis using the standard time integration scheme suffers from the numerical instability and divergence. In order to overcome this problem, the transient response of the linear complex stiffness system is obtained by the convolution integral of a green function which corresponds to the unit-impulse free vibration response of the complex system. The damped free vibration of the complex system is theoretically derived by making use of the state-space formulation and the Hilbert transform. The convolution integral is implemented by piecewise-linearly interpolating the external force and by superimposing the transient responses of discretized piecewise impulse forces. The numerical experiments are carried out to verify the proposed time-domain analysis method, and the correlation between the real and imaginary parts in the free and transient responses is also investigated.

Study on Levenberg-Marquardt for Target Motion Analysis (표적기동분석을 위한 Levenberg-Marquardt 적용에 관한 연구)

  • Cho, Sunil
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.148-155
    • /
    • 2015
  • The Levenberg-Marquardt method is a well known solution about the least square problem. However, in a Target Motion Analysis(TMA) application most of researches have used the Gauss-Newton method as a batch estimator, which of inverse matrix calculation may causes instability problem. In this paper, Levenberg-Marquardt method is applied to TMA problem to prevent its divergence. In experiment, its performance is compared with Gauss-Newton in domain of range, course and speed. Monte Carlo simulation reveals the convergence time and reliability of the TMA based on Levenberg-Marquardt.

Identification and Phylogeny of the Human Endogenous Retrovirus HERV-W LTR Family in Cancer Cells

  • Yi, Joo-Mi;Kim, Hwan-Mook;Kim, Heui-Soo
    • Animal cells and systems
    • /
    • v.6 no.2
    • /
    • pp.167-170
    • /
    • 2002
  • The long terminal repeats (LTRs) of human endogenous retrovirus (HERV) have been found to be coexpressed with sequences of closely located genes. It has been suggested that the LTR elements have contributed to the structural change or genetic variation of human genome connected to various diseases and evolution. We examined the HERV-W LTR elements in various cancer cells (2F7, A43l , A549, HepG2, MIA-PaCa-2, PC-3, RT4, SiHa, U-937, and UO-31). Using genomic DNA from the cancer cells, we performed PCR amplification and identified twelve new HERV-W LTR elements. Those LTR elements showed a high degree of sequence similarity (88-99%) with HERV-W LTR (AF072500). A phylogenetic tree obtained by the neighbor-joining method revealed that HERV-W LTR elements could be mainly divided into two groups through evolutionary divergence. Three HERV-W LTR elements (RT4-2, A43l-1, and UO3l-2) belonged to Group 1, whereas nine LTR elements (2F7-2, A549-1, A549-3, HepG2-3, MP2-2, PC3-1, SiHa-8, SiHa-10, and U937-1) belonged to Group 11. Taken together, our new sequence data of the HERV-W LTR elements may contribute to an understanding of tissue-specific cancer by genomic instability of LTR integration.

Formation of a New Solo-LTR of the Human Endogenous Retrovirus H Family in Human Chromosome 21

  • Huh, Jae-Won;Kim, Dae-Soo;Ha, Hong-Seok;Kim, Tae-Hong;Kim, Wook;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • v.22 no.3
    • /
    • pp.360-363
    • /
    • 2006
  • Human endogenous retroviruses (HERVs) contribute to various kinds of genomic instability via rearrangement and retrotransposition events. In the present study the formation of a new human-specific solo-LTR belonging to the HERV-H family (AP001667; chromosome 21q21) was detected by a comparative analysis of human chromosome 21 and chimpanzee chromosome 22. The solo-LTR was formed as a result of an equal homologous recombination excision event. Several evolutionary processes have occurred at this locus during primate evolution, indicating that mammalian-wide interspersed repeat (MIR) and full-length HERV-H elements integrated into hominoid genomes after the divergence of Old World monkeys and hominoids, and that the solo-LTR element was created by recombination excision of the HERV-H only in the human genome.

Robust algorithm for estimating voltage stability by the modified method of sensitivity index dP/de of real value on voltage vector (전압벡터의 유효분 감도지표 dP/de 수정법에 의한 견고한 전압안정도 평가에 관한 연구)

  • 송길영;김세영;김용하
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.1-8
    • /
    • 1996
  • Recently, much attention has been paid to problems which is concerned with voltage instability phenomena and much works on these phenomena have been made. In this paper, by substituting d $P_{k}$ d $e_{k}$ ( $v^{\rarw}$= e +j f) for $P_{k}$ in conventional load flow, direct method for finging the limit of voltage stability is proposed. Here, by using the fact that taylor se- ries expansion in .DELTA. $P_{k}$ and .DELTA. $Q_{k}$ is terminated at the second-order terms, constraint equation (d $P_{k}$ d $e_{k}$ =0) and power flow equations are formulated with new variables .DSLTA. e and .DELTA.f, so partial differentiations for constraint equation are precisely calculated. The fact that iteratively calculated equations are reformulated with new variables .DELTA.e and .DELTA.f means that limit of voltage stability can be traced precisely through recalculation of jacobian matrix at e+.DELTA.e and f+.DELTA.f state. Then, during iterative process divergence may be avoid. Also, as elements of Hessian mat rix are constant, its computations are required only once during iterative process. Results of application of the proposed method to sample systems are presented. (author). 13 refs., 11 figs., 4 tab.

  • PDF

Distribution of Precipitation on the Korean Peninsula Associated with the Weakening of Tropical Cyclones (태풍의 약화와 관련된 한국의 강수량 분포)

  • Hwang, Ho-Seong;Byun, Hi-Ryong;Lee, Sang-Min;Choi, Ki-Seon;Lee, Ji-Sun
    • Journal of the Korean earth science society
    • /
    • v.31 no.4
    • /
    • pp.322-334
    • /
    • 2010
  • Spatiotemporal characteristics of precipitation in Korea, associated with the weakening of Tropical Cyclones (TCs) around the Korean Peninsula ($32-36^{\circ}N$, $122-132^{\circ}E$) over the last 30 years (1979-2008), were investigated. Weakened TCs are classified as WEC (Weakened to Extratropical Cyclone) and WTD (Weakened to Tropical Depression). In WEC, precipitation was evenly distributed all over the Korean Peninsula and the greater precipitation was recorded in the southern coast. In WTD, the most precipitation was recorded in the southern coast but low precipitation was recorded in the central and inland areas of Korea. The difference of precipitation between WEC and WTD was not statistically significant in Region 2 (Jeollanam-do, Gyeongsangnam-do, southeastern part of Gyeongsangbuk-do, Jeju-do); however, the precipitation resulting from WEC was greater than that resulting from WTD in Region 1 (central area of Korea, Jeollabuk-do, inland of Gyeongsangbuk-do). In WEC, the developed upper-level potential vorticity (PV) and low-level temperature trough shifted to the northwest of TCs approaching Korea. In addition, an upper-level jet stream and strong divergence field were observed to the northeast of the TCs. It was assumed that these meteorological factors had induced baroclinic instability and diabatic process, which created a large precipitation area around the TCs. However, the intense PV, temperature trough, jet stream were not observed in WTD, which created a small precipitation area around the TCs.

An empirical model of air bubble size for the application to air masker (에어마스커의 기포크기 추정 경험적 모델)

  • Park, Cheolsoo;Jeong, So Won;Kim, Gun Do;Park, Youngha;Moon, Ilsung;Yim, Geuntae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.320-329
    • /
    • 2021
  • In this paper, an empirical model of air bubble size to be applied to an air masker for reduction of underwater radiation noise is presented. The proposed model improves the divergence problem under the low-speed flow condition of the existing model derived using Rayleigh's jet instability model and simple continuity condition by introducing a jet flow velocity of air. The jet flow velocity of air is estimated using the bubble size where the liquid is quiescent. In a medium without flow, the size of the bubble is estimated by an empirical method where bubble formation regime is divided into a laminar-flow range, a transition range, and a turbulent-flow range based on the Reynolds number of the injected air. The proposed bubble size model is confirmed to be in good agreement with the Computational Fluid Dynamics (CFD) analysis result and the experimental results of the existing literature. Using the acoustic inversion method, the air bubble population is estimated from the insertion loss measured during the air injection experiment of the air- masker model in a large cavitation tunnel. The results of the experiments and the bubble size model are compared in the paper.

Sensorless speed control of permanent magnet synchronous motor using square-root extended kalman filter (제곱근 확장 칼만 필터에 의한 영구자석 동기전동기의 센서리스 속도제어)

  • Moon, Cheol;Kwon, Young-Ahn
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.217-222
    • /
    • 2016
  • This study investigates the design, analysis, and implementation of the square-root extended Kalman filter by using an algorithm derived by combining the Potter or Carlson algorithm with the modified Gram-Schmidt algorithm, for sensorless speed control of a permanent-magnet synchronous motor. The sensitivity of the Kalman filter to round-off errors is a well-known problem. A possible way to address this limitation is by combining the square-root concept and Kalman filter that can improve the numerical performance and solve instability-related problems such as divergence. This paper presents the design and analysis of the implementation of such a square-root extended Kalman filter. To demonstrate the performance of the proposed filter, experimental results under several operating conditions, such as high and low speeds, reversal rotation, detuned parameters and load test, have been analyzed. Further, code sizes and operation times have been compared. Experimental results establish the performance of the proposed square-root extended Kalman filter-based estimation technique for sensorless speed control of a permanent-magnet synchronous motor.

Phenomenology of nonlinear aeroelastic responses of highly deformable joined wings

  • Cavallaro, Rauno;Iannelli, Andrea;Demasi, Luciano;Razon, Alan M.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.2
    • /
    • pp.125-168
    • /
    • 2015
  • Dynamic aeroelastic behavior of structurally nonlinear Joined Wings is presented. Three configurations, two characterized by a different location of the joint and one presenting a direct connection between the two wings (SensorCraft-like layout) are investigated. The snap-divergence is studied from a dynamic perspective in order to assess the real response of the configuration. The investigations also focus on the flutter occurrence (critical state) and postcritical phenomena. Limit Cycle Oscillations (LCOs) are observed, possibly followed by a loss of periodicity of the solution as speed is further increased. In some cases, it is also possible to ascertain the presence of period doubling (flip-) bifurcations. Differences between flutter (Hopf's bifurcation) speed evaluated with linear and nonlinear analyses are discussed in depth in order to understand if a linear (and thus computationally less intense) representation provides an acceptable estimate of the instability properties. Both frequency- and time-domain approaches are compared. Moreover, aerodynamic solvers based on the potential flow are critically examined. In particular, it is assessed in what measure more sophisticated aerodynamic and interface models impact the aeroelastic predictions. When the use of the tools gives different results, a physical interpretation of the leading mechanism generating the mismatch is provided. In particular, for PrandtlPlane-like configurations the aeroelastic response is very sensitive to the wake's shape. As a consequence, it is suggested that a more sophisticate modeling of the wake positively impacts the reliability of aerodynamic and aeroelastic analysis. For SensorCraft-like configurations some LCOs are characterized by a non-synchronous motion of the inner and outer portion of the lower wing: the wing's tip exhibits a small oscillation during the descending or ascending phase, whereas the mid-span station describes a sinusoidal-like trajectory in the time-domain.