• 제목/요약/키워드: divalent cations

검색결과 154건 처리시간 0.026초

Permeation and Gating of Inward Rectifer Potassium Channels

  • Choe, Han;Palmer, Larry G.;Sackin, Henry
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2002년도 제9회 학술 발표회 프로그램과 논문초록
    • /
    • pp.19-19
    • /
    • 2002
  • The gating kinetics of an inward-rectifier K$\^$+/ channel, ROMK2 (Kir1.lb), were described by a model having one open state and two closed states. The long closed state was abolished by EDTA, suggesting that it was due to block by divalent cations. These closures exhibit a biphasic voltage-dependence, implying that the divalent blockers can permeate the channel.(omitted)

  • PDF

The Effect of External Divalent Cations on Intestinal Pacemaking Activity

  • Kim, Byung-Joo;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권4호
    • /
    • pp.203-207
    • /
    • 2005
  • Electrical rhythmicity in the gastrointestinal (GI) muscles is generated by pacemaker cells, known as interstitial cells of Cajal (ICC). In the present study, we investigated the effect of external divalent cations on pacemaking activity in cultured ICC from murine small intestine by using whole-cell patch clamp techniques. ICC generated pacemaker currents under a voltage clamp or electrical pacemaker potentials under a current clamp, and showed a mean amplitude of $-500{\pm}50$ pA or $30{\pm}1$ mV and the frequency of $18{\pm}2$ cycles/min. Treatments of the cells with external 0 mM $Ca^{2+}$ stopped pacemaking activity of ICC. In the presence of 2 mM $Ca^{2+}$, 0 mM external $Mg^{2+}$ depolarized the resting membrane potential, and there was no change in the frequency of pacemaking activity. However, 10 mM external $Mg^{2+}$ decreased the frequency of pacemaking activity ($6.75{\pm}1$ cycles/min, n=5). We replaced external 2 mM $Ca^{2+}$ with equimolar $Ba^{2+}$, $Mn^{2+}$ and $Sr^{2+}$, and they all developed inward current in the sequence of $Ba^{2+}$>$Mn^{2+}$>$Sr^{2+}$. Also the frequency of the pacemaking activity was stopped or irregulated. We investigated the effect of 10 mM $Ba^{2+}$, $Mn^{2+}$ and $Sr^{2+}$ on pacemaking activity of ICC in the presence of external 0 mM $Mg^{2+}$, and found that 10 mM $Ba^{2+}$ and $Mn^{2+}$ induced large inward current and stopped the pacemaking activity of ICC (n=5). Interestingly, 10 mM $Sr^{2+}$ induced small inward current and potentiated the amplitude of pacemaking activity of ICC (n=5). These results indicate that extracellular $Ca^{2+}$ and $Mg^{2+}$ are requisite for the pacemaking activity of ICC.

마우스 수정란에 있어서 부계 DNA 손상이 부계 DNA 퇴화 및 초기 배발달에 미치는 영향 (Effect of Paternal DNA Damage on Paternal DNA Degradation and Early Embryonic Development in Mouse Embryo: Supporting Evidence by GammaH2AX Expression)

  • 김창진;이경본
    • 한국동물생명공학회지
    • /
    • 제34권3호
    • /
    • pp.197-204
    • /
    • 2019
  • This study was investigated to test whether the zygote recognized the topoisomerase II beta (TOP2B) mediated DNA fragmentation in epididymal spermatozoa or the nuclease degradation in vas deferens spermatozoa by testing for the presence of gammaH2AX (γH2AX). The γH2AX is phosphorylation of histone protein H2AX on serine 139 occurs at sites flanking DNA double-stranded breaks (DSBs). The presence of γH2AX in the pronuclei of mouse zygotes which were injected with DNA broke epididymal spermatozoa was tested by immunohistochemistry at 5 and 9 h post fertilization, respectively. Paternal pronuclei that arose from epididymal spermatozoa treated with divalent cations did not stain for γH2AX at 5 h. On the other hand, in embryos injected with vas deferences spermatozoa that had been treated with divalent cations, γH2AX was only present in paternal pronuclei, and not the maternal pronuclei at 5 h. Interestingly, both pronuclei stained positively for γH2AX for all treatments and controls at 9 h after sperm injection. In conclusion, the embryos recognize DNA that is damaged by nuclease, but not by TOP2B because H2AX in phosphorylated in paternal pronuclei resulting from spermatozoa treated with fragmented DNA from vas deferens spermatozoa treated with divalent cations, but not from epididymal spermatozoa treated the same way.

Ion Chromatography에 의한 혈액중에서 양ion의 분석에 관한 연구 (Studies on the Analysis of Cations by Ion Chromatography)

  • 박성우;김은호;유재훈;김을환
    • 한국환경보건학회지
    • /
    • 제16권2호
    • /
    • pp.113-119
    • /
    • 1990
  • Many studies on the analysis of cations in blood have been reported. However, no suitable method for the pretreatment of blood for the determination of cations by Ion Chromotography. As a result, pretreatment method that the membrane filtration of plasma a diluted 1 to 100 fold acidified pH 3.5 was found to be the most suitable. The recoveris of monovalent cations in blood were yield 101%(Na$^{+}$). 102%(NH$^{+}_{4}$) and 101%(K$^{+}$) Determinations of divalent cations(Mg and Ca ions) in blood by Ion chromatography were summarized as followed conditions Separator Column : CS$_{3}$. Suppressor Column : CMMS. Eluent conen : 25m M-HCl/2mM-Histidine. Regenerant conen: 40mM-Ba(OH)$_{2}$.

  • PDF

골격근 小胞體의 ATPase活性에 미치는 二價金屬이온의 영향 (Kinetic Studies on the Effects of Divalent Cations on the ATPase Activity of the Fragmented Sarcoplasmic Reticulum of Rabbit Skeletal Muscle)

  • Park, Young-Soon;Ha, Doo-Bong
    • 한국동물학회지
    • /
    • 제23권3호
    • /
    • pp.137-148
    • /
    • 1980
  • 토끼 골격근 小胞體의 ATPase 活性에 미치는 $Hg^{2+}, Cu^{2+}, Pb^{2+}, Cd^{2+}, Mn^{2+}$ 등 2價 陽이온을 영향을 비교 측정하였다. 이들 陽이온은 $Mn^{2+}$을 제외하고 모두 이 酵素의 活性을 阻害하였다. $Mn^{2+}$은 低濃度 (12.5-100 $\mu$M)에서는 오히여 活性을 증가시켰고, 그 보다 高濃度에서는 극히 약하게 阻害하였다. $Mn^{2+}$을 제외한 위의 2價 陽이온들의 阻害龍은 $Hg^2$가 가장 컸고 (阻害係數 Ki = 10$\mu$M), rm 다음이 $Cu^{2+}$ (Ki = 30$\mu$M), $Pb^{2+}$ (Ki = 120$\mu$M), $Cd^{2+}$ (Ki = 320$\mu$M)의 순이었다. 위의 4종의 陽이온들의 ATPase에 대한 阻害作用을 可逆的 非競爭的 阻害로 판정되었다.

  • PDF

Solute Carrier SLC41A1 'A MINI REVIEW'

  • Basnet Hom Bahadur
    • 한국환경성돌연변이발암원학회지
    • /
    • 제25권2호
    • /
    • pp.60-65
    • /
    • 2005
  • The human solute carrier, SLC41Al, is a $Mg^{2}+$ transporter that is regulated by extracellular magnesium. Although intracellular magnesium plays a fundamental role in cellular metabolism, little is known about how $Mg^{2}+$ is taken up and controlled by cells. Magnesium plays a fundamental role in cellular metabolism so that its control within the body is critical. Magnesium homeostasis is principally a balance between intestinal absorption of dietary magnesium and renal excretion of urinary magnesium. The kidney, mainly the distal convoluted tubule, controls magnesium reabsorption. Although renal reabsorption is under the influence of many hormones, selective regulation of magnesium transport is due to intrinsic control involving transcriptional processes and synthesis of transport proteins. Using microarray analysis, identification of the genetic elements involved with this transcriptional control has been begun. SLC41A1(GenBank Accession No. AJ514402), comprises 10 putative transmembrane domains, two of which are highly homologous to the integral membrane part of the prokaryote transports $Mg^{2}+$ and other divalent cations $Sr^2+,\;Zn^2+,\;Cu^2+,\;Fe^2+,\;Co^2+,\;Ba^2+,\;and\;Cd^2+,\;but\;not\;Ca^2+,\;Mn^2+,\;and\;Ni^2+.$ Transport of $Mg^{2}+$ by SLC41Al is rheogenic, voltage dependent, and not coupled to Na or Cl. Expressed SLC41Al transports a range of other divalent cations: $Mg^{2+},\;Sr^{2+},\;Zn^{2+},\;Cu^{2+},\;Fe^{2+},\;Co^{2+},\;Ba^{2+},\;and\;Cd^{2+}$. The divalent cations $Ca^{2+},\;Mn^{2+},\;and\;Ni^{2+}$and the trivalent ion $Gd^{3+}$ did not induce currents nor did they inhibit $Mg^{2+}$ transport. The nonselective cation $La^{3+}$ abolishes $Mg^{2+}$ uptake. Computer analysis of the SLC41Al protein structure reveals that it belongs to MgtE protein family & suggested that the human solute carrier, SLC41Al, might be a eukaryotic $Mg^{2+}$ transporter closely related $(60-70\%)$ protein encoded by SLC41A2 is a $Mg^{2}+$ transporter that might be involved in magnesium homeostasis in epithelial cells also transports a range of other divalent cations: $Ba^2,\;Ni^2,\;CO^2,\;Fe^2,\;or\;Mn^2,\;but\;not\;Ca^2,\;Zn^2,\;or\;Cu^{2+}$ that may have related functional properties.

  • PDF

Effect of Various Divalent Ions on the Calcium Current of Adrenal Medullary Chromaffin Cells in the Rat

  • Kim, Jun;Leem, Chae-Hun;Kim, Sang-Jeong
    • The Korean Journal of Physiology
    • /
    • 제26권2호
    • /
    • pp.113-122
    • /
    • 1992
  • It is well known that chromaffin cells of adrenal medulla secrete catecholamine in response to sympathetic nerve activation and the influx of $Ca^{2+}$ through the voltage dependent $Ca^{2+}$ channels (VDCC) in the cell membrane do a major role in this secretory process. In this study, we explored the effect of divalent cations on VDCC of rat chromaffin cells. Rat (Sprague-Dawley rat, 150-250 gm) chromaffin cells were isolated and cultured. Standard giga seal, whole cell recording techniques were employed to study $Ca^{2+}$ current with external and internal solutions that could effectively isolate VDCC currents $(NMG\;in\;external\;and\;TEA\;and\;Cs^{2+}\;in\;internal\;solution)$. The voltage dependence and the inactivation time course of VDCC in our cells were identical to those of bovine chromaffin cells. A persistent inward current was first activated by depolarizing step pulse from the holding potential (H.P.) of -80 mV to -40 mV, increased to maximum amplitude at around +10 mV, and became smaller with progressively higher depolarizing pulses to reverse at around +60 mV. The inactivation time constant $(\tau)$, fitted from the long duration test potential (2 sec) was $1295.2{\pm}126.8$ msec $(n=20,\;1\;day\;of\;culture,\;mean\;{\pm}S.E.M.)$ and the kinetic parameters were not altered along the culture duration. Nicardipine $(10\;{\mu}M)$ blocked the current almost completely. Among treated divalent cations such as $Cd^{2+},\;Co^{2+},\;Ni^{2+},\;Zn^{2+}\;and\;,Mn^{2+},\;Cd^{2+}$ was the most potent blocker on VDCC. When the depolarizing step pulse from -80 mV to 10 mV was applied, the equilibrium dissociation constant $(K_d)$ of $Cd^{2+}\;was\;39\;{\mu}M,\;K_d\;of\;Co^{2+}\;was\;100\;{\mu}M\;and\;K_d\;of\;Ni^{2+}];was];780{\mu}M.$ The principal findings of this study are as follows. First, the majority of $Ca^{2+}$ channels in rat chromaffin cells are well classified to L-type $Ca^{2+}$ channel in the view of kinetics and pharmacology. Second, all divalent cations tested could block the $Ca^{2+}$ current and the most potent blocker among the tested was $Cd^{2+}$.

  • PDF

2가 이온 치환 제올라이트 A 의 구조와 열적 성질 (The Structures and Thermal Properties of Divalent Ion Exchanged Zeolite A)

  • 박종렬;김양;김은식;최상구
    • 대한화학회지
    • /
    • 제33권4호
    • /
    • pp.357-365
    • /
    • 1989
  • 제올라이트 A($Na_{12}Al_{12}Si_{12}O_{48}$ ; $Na_{12}-A$)를 $Mg^{2+}$, $Ca^{2+}$, $Zn^{2+}$$Co^{2+}$ 등의 2가 이온으로 치환하여 얻어진 $Mg_4Na_4Al_{12}Si_{12}O_{48}$($Mg_4Na_4-A$), $Ca_6Al_{12}Si_{12}O_{48}$($Ca_6-A$), $Zn_5Na_2Al_{12}Si_{12}O_{48}$($Zn_5Na_2-A$) 및 $Co_4Na_4Al_{12}Si_{12}O_{48}$($Co_4Na_4-A$)의 수화구조와 탈수구조에 있어서 골조원자, 양이온 및 물분자들의 위치와 에너지를 몇가지 퍼텐셜 함수를 써서 계산하여 구하였다. 탈수가 될 때 양이온은 수화구조에서의 6-ring이나 8-ring의 골조산소 쪽으로 이동하였으며 일반적으로 2가 이온치환 제올라이트 A가 완전탈수될 때는 그 골조가 제올라이트 A의 골조보다 불안정하였다. 수화상태의 경우 골조내에는 인접물분자 또는 골조산소원자와 수소결합하는 물; W(III), $Na^+$ 이온에 배위된 물; W(II) 및 2가 이온에 배위되는 물; W(I) 등이 존재하였으며 이들 세 그룹의 물분자들의 탈수에 대응하는 세개의 DTA 흡열피크를 관측하였다.

  • PDF

Enhancement of the Water-resistance and Physical Properties of Sodium Alginate Film

  • Kim, Eun-Jung;Kim, Byung-Yong;Rhim, Jong-Whan
    • Food Science and Biotechnology
    • /
    • 제14권1호
    • /
    • pp.108-111
    • /
    • 2005
  • To improve water-resistance and physical properties of sodium alginate film, effects of sodium alginate and plasticizer concentrations, divalent cation types and concentrations, and immersion time of films into divalent cation solutions on sodium alginate films were evaluated, based on elongation strength (ES), elongation rate (E), water vapor permeability (WVP), and water solubility (WS). Film made from 1.5% sodium alginate solution (w/w) had low WVP and WS, which are optimal characteristics for application of film preparation. Addition of plasticizer increased E and WS. Less than 2% $CaCl_2$ addition and 15min immersion time reduced WVP, WS, and E significantly (p<0.05). Sodium alginate films treated with $CuCl_2$, and $ZnCl_2$ solutions had lower WVP and WS, whereas $MgCl_2$ had no influence on improving water resistance of films.