• Title/Summary/Keyword: disturbed flow

Search Result 115, Processing Time 0.025 seconds

Ursodeoxycholic Acid (UDCA) Exerts Anti- Atherogenic Effects by Inhibiting Endoplasmic Reticulum (ER) Stress Induced by Disturbed Flow

  • Chung, Jihwa;Kim, Kyoung Hwa;Lee, Seok Cheol;An, Shung Hyun;Kwon, Kihwan
    • Molecules and Cells
    • /
    • v.38 no.10
    • /
    • pp.851-858
    • /
    • 2015
  • Disturbed blood flow with low-oscillatory shear stress (OSS) is a predominant atherogenic factor leading to dysfunctional endothelial cells (ECs). Recently, it was found that disturbed flow can directly induce endoplasmic reticulum (ER) stress in ECs, thereby playing a critical role in the development and progression of atherosclerosis. Ursodeoxycholic acid (UDCA), a naturally occurring bile acid, has long been used to treat chronic cholestatic liver disease and is known to alleviate endoplasmic reticulum (ER) stress at the cellular level. However, its role in atherosclerosis remains unexplored. In this study, we demonstrated the anti-atherogenic activity of UDCA via inhibition of disturbed flow-induced ER stress in atherosclerosis. UDCA effectively reduced ER stress, resulting in a reduction in expression of X-box binding protein-1 (XBP-1) and CEBP-homologous protein (CHOP) in ECs. UDCA also inhibits the disturbed flow-induced inflammatory responses such as increases in adhesion molecules, monocyte adhesion to ECs, and apoptosis of ECs. In a mouse model of disturbed flow-induced atherosclerosis, UDCA inhibits atheromatous plaque formation through the alleviation of ER stress and a decrease in adhesion molecules. Taken together, our results revealed that UDCA exerts anti-atherogenic activity in disturbed flow-induced atherosclerosis by inhibiting ER stress and the inflammatory response. This study suggests that UDCA may be a therapeutic agent for prevention or treatment of atherosclerosis.

Shear Stress and Atherosclerosis

  • Heo, Kyung-Sun;Fujiwara, Keigi;Abe, Jun-Ichi
    • Molecules and Cells
    • /
    • v.37 no.6
    • /
    • pp.435-440
    • /
    • 2014
  • Hemodynamic shear stress, the frictional force acting on vascular endothelial cells, is crucial for endothelial homeostasis under normal physiological conditions. When discussing blood flow effects on various forms of endothelial (dys)function, one considers two flow patterns: steady laminar flow and disturbed flow because endothelial cells respond differently to these flow types both in vivo and in vitro. Laminar flow which exerts steady laminar shear stress is atheroprotective while disturbed flow creates an atheroprone environment. Emerging evidence has provided new insights into the cellular mechanisms of flowdependent regulation of vascular function that leads to cardiovascular events such as atherosclerosis, atherothrombosis, and myocardial infarction. In order to study effects of shear stress and different types of flow, various models have been used. In this review, we will summarize our current views on how disturbed flow-mediated signaling pathways are involved in the development of atherosclerosis.

Laminar Flow Inhibits ER Stress-Induced Endothelial Apoptosis through PI3K/Akt-Dependent Signaling Pathway

  • Kim, Suji;Woo, Chang-Hoon
    • Molecules and Cells
    • /
    • v.41 no.11
    • /
    • pp.964-970
    • /
    • 2018
  • Atherosclerosis preferentially involves in prone area of low and disturbed blood flow while steady and high levels of laminar blood flow are relatively protected from atherosclerosis. Disturbed flow induces endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). ER stress is caused under stress that disturbs the processing and folding of proteins resulting in the accumulation of misfolded proteins in the ER and activation of the UPR. Prolonged or severe UPR leads to activate apoptotic signaling. Recent studies have indicated that disturbed flow significantly up-regulated $p-ATF6{\alpha}$, $p-IRE1{\alpha}$, and its target spliced XBP-1. However, the role of laminar flow in ER stress-mediated endothelial apoptosis has not been reported yet. The present study thus investigated the role of laminar flow in ER stress-dependent endothelial cell death. The results demonstrated that laminar flow protects ER stress-induced cleavage forms of PARP-1 and caspase-3. Also, laminar flow inhibits ER stress-induced $p-eIF2{\alpha}$, ATF4, CHOP, spliced XBP-1, ATF6 and JNK pathway; these effects are abrogated by pharmacological inhibition of PI3K with wortmannin. Finally, nitric oxide affects thapsigargin-induced cell death in response to laminar flow but not UPR. Taken together, these findings indicate that laminar flow inhibits UPR and ER stress-induced endothelial cell death via PI3K/Akt pathway.

Development of a Kinematic Wave Model to Route Overland Flow in Vegetated Area (II) -Runoff Plot Experiments and Model Application- (초지의 지표면 흐름을 추적하기 위한 Kinematic Wave Model의 개발(II) - 포장실험과 모형의 응용 -)

  • ;W.L.Magette
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.3
    • /
    • pp.74-80
    • /
    • 1993
  • Runoff simulation tests to investigate the flow mechanics of nonsuomerged overland flow in a natural grass intervening land system were condueted and a modified kinematic wave overland runoff model developed by Choi et al. (1993) was verified. Nonhomogeneity and heterogeneity of the soil, slope, local topography, infiltration, grass density, and the density and activity of the soil microhes and wild animals were the major factors affecting the flow. Streamlines were disturbed by grass stems and small concentrated flows due to the disturbed streamlines and local topography were observed a lot. Relatively larger concentrated flows were observed where bundles of grass were dominant than where individual grasses were growing. Predicted hydrographs were agreed verv well with measured hydrographs. Since the modified model considers grass density in computing flow depth and hydraulic radius, it can be better than existing kinematic wave model if it were used to route nonpoint source pollutant attenuation processes in many grass intervening land systems.

  • PDF

A Numerical Analysis on the Hemodynamic Characteristics in the blood vessel with Stenosis (협착부가 존재하는 혈관의 유동 특성에 관한 수치 해석적 연구)

  • Jung, H.;Park, C.G.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1987-1992
    • /
    • 2004
  • Hemodynamics behavior of the blood flow is influenced by the presence of the arterial stenosis. If stenosis is present in an artery, normal blood flow is disturbed. In the present study, characteristics of steady and pulsatile flow of non-Newtonian fluid, the effects of stenosised geometry are analyzed by numerical simulation. One interesting point is that non-symmetric solutions were obtained at severity stenosis, although the stenosis and the boundary condition were all axisymmetric.

  • PDF

The most unstable case in plane Poiseuille flow on transition by using pseudospectra method (Pseudospectra를 이용한 평행 평판 사이 유동에서 가장 불안정한 경우)

  • Choi Sangkyu;Chung Myung Kyoon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.691-694
    • /
    • 2002
  • The most unstable situation of laminar plane Poiseuille flow for transition to turbulence is investigated by using a pseudo-spectral method. A number of various disturbance modes are tested and it is found that the flow is the most unstable when it is disturbed by an oblique wave with an angle of $29.7^{\circ}$.

  • PDF

Viscous Flow Analysis of the Waterjet Duct (물분사 추진기 관내 점성유동해석)

  • 왕정용;전호환;박일룡;차상명
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.68-72
    • /
    • 2000
  • In the present paper, the numerical calculations for the viscous duct flow of water jet propulsion systems ship are carried out. The governing equation, incompressible Navier-Stokes equation, is discretized and analysed by a Method with the stcandard turbulence modeling. For the calculations the duct flow which h e intake flows disturbed by the ship, the results dcuhted by the potenti used Numerical results show fairly good agreement with the experimental data

  • PDF

The Study on Changes of Mixing Layer Caused by Acoustic Excitation (음향 여기에 의한 혼합층 유동구조의 변화에 대한 연구)

  • 정양범
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.120-127
    • /
    • 2000
  • This study is concerned with evaluating the effects of acoustic excitation on the development of two stream mixing layer generated by split plate. The ratios of two velocities U1 and U2 either side of the splitter plate were such that $U_1/U_2$=1.0 (uniform flow) or $U_1/U_2$<1.0(shear flow). The mixing layers were disturbed acoustically through the edge of split plate. Quantitative data were obtained with hot-wire anemometry. Flow visualization with smoke-wire was also employed for qualitative study. the results show that the large scale structures of mixing layers are strongly affected by excitation frequency and amplitude in both uniform and shear flows. The maximum streamwise and vertical turbulent intensities of the excited flow fields are apt to be decreased as compared with those of without excitation. The flow characteristics of uniform flow are more influenced by acoustic excitation than those of shear flow.

  • PDF

Thermal Stress Intensity Factors for Rigid Inclusions of Cusp Crack Shape (커스프균열형 강체함유물의 열응력 세기계수에 관한 연구)

  • 이강용;최흥섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.497-504
    • /
    • 1988
  • The steady state thermal stress intensity factors (TSIF's) are analyzed for hypocycloid, symmetric airfoil and symmetric lip type rigid inclusions embedded in infinite elastic solids, using Boganoff's complex variable approach in plane thermoplasticity. Two thermal conditions are considered, one with an uniform heat flow disturbed by an insulated rigid inclusion of cusp crack shape and the other with an uniform heat flow disturbed by a rigid inclusion of cusp crack shape with fixed boundary temperature. The tendencies of TSIF's for rigid inclusions of cusp crack shape are somewhat different from those of traction free cusp cracks. However, if k=-1, the non-dimensionalized TSIF's for rigid inclusions of cusp crack shape become those of traction free cusp cracks like the tendencies of the SIF's under mechanical loading conditions. The thermal stress and displacement components for a rigid circular inclusion of radius Ro are drived from the results of a hypocycloid crack type rigid inclusion.

A Turbulent Boundary Layer Disturbed by an Elliptic Cylinder (타원형 실린더에 의해 교란되어진 난류경계층에 관한 실험적 연구)

  • Choe, Jae-Ho;Jo, Jeong-Won;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1476-1482
    • /
    • 2001
  • Turbulent boundary layer over a flat plate was disturbed by installing an elliptic cylinder with an axis ratio of AR=2. For comparison, the same experiment was carried out for a circular cylinder having the same vertical height. The surface pressure and the heat transfer coefficient on the flat plate were measured with varying the gap distance between the elliptic cylinder and the flat plate. The mean velocity and the turbulent intensity profile of the streamwise velocity component were measured using a hot-wire anemometry. As a result, the flow structure and the local heat transfer rate were modified by the interaction between the cylinder wake and the turbulent boundary layer as a function of the critical gap ratio where the regular vortices start to shed. For the elliptic cylinder, the critical gap ratio is increased and the surface pressure on the flat plate is recovered rapidly at downstream location, compared with the equivalent circular cylinder. The maximum heat transfer rate occurs at the gap ratio of G/B = 0.5, where the flow interaction between the lower shear layer of the cylinder wake and the turbulent boundary layer is strong.