• Title/Summary/Keyword: disturbance estimation

Search Result 326, Processing Time 0.039 seconds

Design of a Force Estimator using an FLANN with a Disturbance Observer and Application to a Robot Manipulator (함수 연결 신경망과 외란 관측기를 이용한 힘 추정기 설계 및 로봇 매니퓰레이터에의 응용)

  • 채원범;안현식;김도현
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.27-30
    • /
    • 2000
  • In this paper, we propose a new approach to determination of environment forces acting on a rigid body. To estimate the output of disturbance observer due to internal torque, the disturbance observer output estimator using functional link neural network (FLANN) is designed. It is also shown by simulation results that the precise estimation of contact force is achieved for a 2-link SCARA robot performing position/force control.

  • PDF

Disturbance Observer with Binary Control (바이너리제어를 이용한 외란관측기)

  • You, Wan-Sik;Kim, Yeung-Cheol;Kim, Young-Jo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.297-299
    • /
    • 1995
  • In this paper, a disturbance observer with binary control is proposed to suppress the chattering of sliding mode observer in estimation of the external disturbance. Binary control has the properly of chattering alleviation in addition to advantages of the conventional sliding mode control. As a simulation result, it is confirmed that the robust and high precision position control is possible by the proposed binary observer.

  • PDF

Comparative Studies of Frequency Estimation Method for Fault Disturbance Recorder (고장 왜란 기록기를 위한 주파수 추정 기법의 비교 연구)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.2
    • /
    • pp.87-92
    • /
    • 2012
  • Voltage and current phasor estimation has been executed by GPS-based synchronized PMU, which has become an important way of wide-area blackout protection for the prevention of expending faults in a power system. The PMU technique can not easily get the field data and it is impossible to share information, so that there has been used a FNET(Frequency Monitoring Network) method for the wide-area intelligent protection in USA. It consists of FDR(Fault Disturbance Recorder) and IMS(Information Management System). Therefore, FDR must provide an optimal frequency estimation method that is robust to noise and failure. In this paper, we present comparative studies for the frequency estimation method using IRDWT(Improved Recursive Discrete Wavelet Transform), FRDWT(Fast Recursive Discrete Wavelet Transform), and DFT(Discrete Fourier Transform). The Republic of Korea345[kV] power system modeling data by EMTP-RV are used to evaluate the performance of the proposed two kinds of RDWT(Recursive Discrete Wavelet Transform) and DFT. The simulation results show that the proposed frequency estimation technique using FRDWT could be the optimal frequency measurement method, and thus be applied to FDR.

A Sequential Orientation Kalman Filter for AHRS Limiting Effects of Magnetic Disturbance to Heading Estimation

  • Lee, Jung Keun;Choi, Mi Jin
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1675-1682
    • /
    • 2017
  • This paper deals with three dimensional orientation estimation algorithm for an attitude and heading reference system (AHRS) based on nine-axis inertial/magnetic sensor signals. In terms of the orientation estimation based on the use of a Kalman filter (KF), the quaternion is arguably the most popular orientation representation. However, one critical drawback in the quaternion representation is that undesirable magnetic disturbances affect not only yaw estimation but also roll and pitch estimations. In this paper, a sequential direction cosine matrix-based orientation KF for AHRS has been presented. The proposed algorithm uses two linear KFs, consisting of an attitude KF followed by a heading KF. In the latter, the direction of the local magnetic field vector is projected onto the heading axis of the inertial frame by considering the dip angle, which can be determined after the attitude KF. Owing to the sequential KF structure, the effects of even extreme magnetic disturbances are limited to the roll and pitch estimations, without any additional decoupling process. This overcomes an inherent issue in quaternion-based estimation algorithms. Validation test results show that the proposed method outperforms other comparison methods in terms of the yaw estimation accuracy during perturbations and in terms of the recovery speed.

Design of a Robust Fine Seek Controller Using a Genetic Algorithm (유전자 알고리듬을 이용한 강인 미동 탐색 제어기의 설계)

  • Lee, Moonnoh;Jin, Kyoung Bog
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.5
    • /
    • pp.361-368
    • /
    • 2015
  • This paper deals with a robust fine seek controller design problem with multiple constraints using a genetic algorithm. A robust $H\infty$ constraint is introduced to attenuate effectively velocity disturbance caused by the eccentric rotation of the disk. A weighting function is optimally selected based on the estimation of velocity disturbance and the estimated minimum velocity loop gain. A robust velocity loop constraint is considered to minimize the variances of the velocity loop gain and bandwidth against the uncertainties of fine actuator. Finally, a robust fine seek controller is obtained by solving a genetic algorithm with an LMI condition and an appropriate objective function. The proposed controller design method is applied to the fine seek control system of a DVD recording device and is evaluated through the experimental results.

Estimation of Output Derivative of The System with Disturbance (외란이 있는 시스템의 출력미분치 추정)

  • 김유승;양호석;이건복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.253-258
    • /
    • 2002
  • This work is concerned with the estimation of output derivatives and their use for the design of robust controller for linear systems with systems uncertainties due to modeling errors and disturbance. It is assumed that a nominal transfer function model and quantitative bounds for system uncertainties are known The developed control schemes are shown to achieve regulation of the system output and ensures boundedness of the system states without imposing any structural conditions on system uncertainties and disturbances. Output derivative estimation is first conducted trough restructuring of the plant in a specific parameterization. They are utilized for constructing robust nonlinear high-gain feedback controller of a SMC(Sliding Mode Controller)Type. The performances of the developed controller are evaluated and shown to be effective and useful through simulation study.

  • PDF

Initial Pole Position Estimation of Surface PM-LSM

  • Kim, Tae-Woong;Junichi Watanabe;Sumitoshi Sonoda;Junji Hirai
    • Journal of Power Electronics
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • The elimination of a pole sensor is desirable due to the low-cost requirement, the compactness, and the applied drives. This paper proposes the algorithm for the initial pole-position estimation of a surface permanent magnet linear synchronous motor (PM-LSM), which is carried out under the closed loop control without a pole sensor and is insensitive to the motor parameters. This algorithm is based on the principle that the initial pole position (IPP) is estimated by the trigonometric function of the two reference currents. The effectiveness of the proposed algorithm is confirmed by testing a surface PM-LSM with large disturbance, which result shows that IPP is well estimated within a satisfied moving-distance and a shorter estimation taken-time even if large disturbance such as cogging and friction is existed.

  • PDF

Input-Output Feedback Linearizing Control with Parameter Estimation Based On A Reduced Design Model

  • Non, Kap-Kyun;Dongil Shin;Yoon, En-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.110-110
    • /
    • 2001
  • By the state transformation including independent outputs functions, a nonlinear process model can be decomposed into two subsystems; the one(design model) is described in output variables as new states and used for control system synthesis and the other(disturbance model) is described in the original unavailable states and its couplings with the design model are treated as uncertain time-varying parameters in the design model. Its existence with respect to the design model is ignored. So, the design model is and uncertain time-variant system. Control synthesis based on a reduced design model is a combined form of a time-variant input-output linearization with parameter estimation. The parameter estimation is also based on the design model and it gives the parameter estimates such that the estimated outputs follow the actual outputs in a specified way. The disturbances form disturbance model and as well all the other uncertainties affecting the outputs will be reflected into the estimated parameters used in the linearizing control law.

  • PDF

Reduction of Steady-State Error Using Estimation for Re-Entry Trajectory (추정을 이용한 재진입 궤적의 정상상태 오차감소)

  • 박수홍;이대우
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.130-134
    • /
    • 2001
  • In the re-entry control system, errors apt to induce because the time derivative of drag acceleration is analytically estimated. Still more, the difficulty of estimation of the exact drag coefficient in hypersonic velocity and the nun-reality of the scale height cause a steady-state drag error. This paper proposes the additional method of the disturbance observer. This reduces the steady-state drag error according to the following series. First, this method estimates a error in drag acceleration time derivative by the analytic calculation and then creates the new drag acceleration time derivative using the estimated error. The performance of the re-entry control system is verified about 32 reference trajectories.

  • PDF

Robust Adaptive Control of Nonlinear Output Feedback Systems under Disturbance with Unknown Bounds

  • Y. H. Hwang;H. W. Yang;Kim, D. H.;Kim, D. W.;Kim, E. S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.37.2-37
    • /
    • 2001
  • This paper addresses the robust adaptive output feedback tracking for nonlinear systems under disturbances whose bounds are unknown. A new algorithm is proposed for estimation of unknown bounds and adaptive control of the uncertain nonlinear systems. The State estimation is solved using K-filters, together with the construction of a bound of an error in the state estimation due to the perturbation of the disturbance. Tuning functions are used to estimate unknown system parameters without overparametrization. The proposed control algorithm ensures that the out put tracking error converges to a residual set which can be arbitrarily small, while maintaining the boundedness of all other variables. A simulation shows the effectiveness of the proposed approach

  • PDF