• 제목/요약/키워드: disturbance design

검색결과 1,160건 처리시간 0.035초

Integrated Design of Servomechanisms Using a Disturbance Observer (외란관측기를 이용한 서로계의 통합설계)

  • Kim Min-Seok;Chung Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제29권4호
    • /
    • pp.591-599
    • /
    • 2005
  • This paper proposes a systematic design methodology for high-speed/high-precision servomechanisms by using a disturbance observer. A multiplicative uncertainty model and a two degree-of-freedom controller composed of a disturbance observer (DOB) and a PD controller are considered as subsystems. Analysis of the system performance, such as internal stability and bandwidth of a servomechanism according to subsystem parameters is conducted for better understanding of the dynamic behavior and interactions among the subsystem parameters. Then, an integrated design methodology, where the interactions are considered simultaneously, is applied to design processes of the servomechanism. The tradeoff relationship between disturbance suppression and measurement noise rejection of the DOB is considered through the design process. Numerical case studies show the improved possibility to evaluate and optimize the dynamic motion performance of the servomechanism. Moreover, the disturbance observer designed based on the proposed design methodology yields excellent disturbance suppression performance.

Design of a Model-Based Low-Order Disturbance Observer to Estimate a Sinusoidal Disturbance with Unknown Constant Offset (미지의 상수 오프셋을 갖는 삼각함수 외란 추정을 위한 모델기반 저차 외란 관측기 설계)

  • Lee, Cho-Won;Son, Young Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제65권4호
    • /
    • pp.652-658
    • /
    • 2016
  • In practical control systems differences between nominal and real systems arise from internal uncertainties and/or external disturbances. This paper presents a model-based low-order disturbance observer for a sinusoidal disturbance with unknown constant offset. By using the disturbance model of a biased harmonic signal, the proposed method can successfully estimate the biased sinusoidal disturbance with unknown amplitude and phase but known frequency. At the first stage of the observer design, a model-based disturbance observer is designed when all the system states are measurable. Next, a sufficient condition is presented for the proposed observer to estimate the sinusoidal disturbance with a minimal-order additional dynamics using only output measurement. Comparative computer simulations are performed to test the performance of the proposed method. The simulation results show the enhanced performance of the proposed disturbance observer.

Gain Scheduled State Feedback and Disturbance Feedforward Control for Systems with Bounded Control Input (제어입력 크기제한을 갖는 시스템에서 이득 스케쥴 상태되먹임-외란앞먹임 제어)

  • Kang, Min-Sig
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.915-920
    • /
    • 2007
  • A new optimal state feedback and disturbance feedforward control design in the sense of minimizing $L_{2}-gain$ from disturbance to control output is proposed for disturbance attenuation of systems with bounded control input and measurable disturbance. The controller is derived in the framework of linear matrix inequality(LMI) optimization. A gain scheduled state feedback and disturbance feedforward control design is also suggested to improve disturbance attenuation performance. The control gains are scheduled according to the proximity to the origin of the state of the plant and the magnitude of disturbance. This procedure yields a stable linear time varying control structure that allows higher gain and hence higher performance controller as the state and the disturbance move closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition.

  • PDF

Gain Scheduled State Feedback and Disturbance Feedforward Control for Systems with Bounded Control Input - Theory (제어입력 크기제한을 갖는 시스템에서 이득 스케줄 상태되먹임-외란앞먹임 제어 - 이론)

  • Kang, Min-Sig
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제24권11호
    • /
    • pp.59-65
    • /
    • 2007
  • A new optimal state feedback and disturbance feedforward control design in the sense of minimizing $L_2$-gain from disturbance to control output is proposed for disturbance attenuation of systems with bounded control input and measurable disturbance. The controller is derived in the framework of linear matrix inequality(LMI) optimization. A gain scheduled state feedback and disturbance feedforward control design is also suggested to improve disturbance attenuation performance. The control gains are scheduled according to the proximity to the origin of the state of the plant and the magnitude of disturbance. This procedure yields a stable linear time varying control structure that allows higher gain and hence higher performance controller as the state and the disturbance move closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition.

Overview of Disturbance Observation Techniques for Linear and Nonlinear Systems (선형 및 비선형 시스템을 위한 외란 관측 기법 개관)

  • Lee, Kooksun;Ha, Wonseok;Back, Juhoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제22권5호
    • /
    • pp.332-338
    • /
    • 2016
  • In industrial applications, there are disturbances and uncertainties that bring unfavorable effects to achieving the desired performance of a closed-loop system. Not surprisingly, many researchers have developed various techniques to attenuate influence of the disturbance. One intuitive idea is to design a disturbance estimator, called a disturbance observer, and cancel the effects by feedback action. This paper is a survey of disturbance observers and related methods. We categorize existing methods by design approach, applied system, and characterization of disturbance. Several disturbance observers are explained by simple examples. The readers could use this paper to help understand the configurations of representative disturbance observer methods.

Design of Generalized Model-based Disturbance Rejection Controller with Two Loops (두 개의 루프를 갖는 일반화된 모델 기반의 외란 제거 제어기 설계)

  • 최현택;김봉근;엄광식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제10권5호
    • /
    • pp.385-394
    • /
    • 2004
  • This paper proposes the generalized structure of a model-based disturbance rejection controller called a Robust Internal-loop Compensator (RIC). The framework consists of the RIC in the internal-loop to eliminate disturbances and a feedback controller in the external-loop to achieve nominal control performance. As the main contribution of this paper, we redefine the design problem of the RIC as a regulation control problem, then show that this new definition with the RIC structure provides more design flexibility and less implementation constraints. This is verified through a comparative structural analysis with Disturbance Observer (DOB) and Adaptive Robust Control (ARC). Two design examples of the RIC are given, along with practical issues that should be considered in the design procedure. The proposed framework is demonstrated by simulations of a rotary-type motor and experiments with a linear-type motor system.

Advanced Disturbance Observer Design

  • Kim, Bong-Keun;Chung, Wan-Kyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.95.2-95
    • /
    • 2001
  • Disturbance observer(DOB) based controller design is one of the most popular methods in the field of motion control. In this paper, a generalized disturbance compensation framework, called as robust internal-loop compensator(RIC) is introduced and an advanced design method of DOB is proposed based on the RIC. Mixed sensitivity optimization problem, which is the main issue of DOB design, is solved through the parameterization of DOB in the RIC framework. Different from conventional methods, Q-filter is separated in the mixed sensitivity optimization problem and the systematic design law for the DOB is proposed. This guarantees the robustness and optimality of the DOB and also enables the design for unstable plants.

  • PDF

Practical Design and Implementation Methodology for Disturbance Rejection Controller (외란 제거 제어기의 실제적인 설계 및 구현 방법)

  • Yeo Hee-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제6권1호
    • /
    • pp.37-47
    • /
    • 2005
  • This Paper proposes a practical design and implementation methodology for a disturbance rejection controller. In a 2 Degree-Of-Freedom (DOF) structure, disturbance rejection performance can be improved without a high gain in forward-loop controller which might cause unwanted side-effects in conventional controller. But, since design methodology of 2 DOF controller is originally derived from the 2 DOF theory, it is not easy to utilize fer various industrial applications. Disturbance observer is a simple, but very effective 2 DOF controller. In this paper, practical issues are discussed from basic idea of DOB to technical procedure for design and implementation. Additionally, a methods and their examples of experimental modeling are explained. The proposed method is demonstrated by two examples of linear-type motor systems.

  • PDF

A Disturbance Observer Design for Compensating Backlash at Robot Joint (로봇 관절의 백래쉬 보상을 위한 외란관측기 설계)

  • Ahn, Won-Ki;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.187-189
    • /
    • 2006
  • In mechanical system, gear trains have backlash innately. With the presence of inherent backlash, the overall system performance is limited in many practical control systems. It has been reported that a disturbance observer has the property of effective removing disturbance and cutting measurement noise off. The plant is remodeled with modified disturbance observer to observe and compensate backlash characteristics. And this paper describes a method to design Q filter and to analyze the effects of disturbance and measurement noise to the output. It is shown that the vibration and tracking error caused by backlash were decreased and the time constant and relative degree are important factor to design Q filter.

  • PDF

Recursive Design of Nonlinear Disturbance Attenuation Control for STATCOM

  • Liu Feng;Mei Shengwei;Lu Qiang;Goto Masno
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권spc2호
    • /
    • pp.262-269
    • /
    • 2005
  • In this paper, a nonlinear robust control approach is applied to design a controller for the Static Synchronous Compensator (STATCOM). A robust control dynamic model of STATCOM in a one-machine, infinite-bus system is established with consideration of the torque disturbance acting on the rotating shaft of the generator set and the disturbance to the output voltage of STATCOM. A novel recursive approach is utilized to construct the energy storage function of the system such that the solution to the disturbance attenuation control problem is acquired, which avoids the difficulty involved in solving the Hamilton-Jacobi-Issacs (HJI) inequality. Sequentially, the nonlinear disturbance attenuation control strategy of STATCOM is obtained. Simulation results demonstrate that STATCOM with the proposed controller can more effectively improve the voltage stability, damp the oscillation, and enhance the transient stability of power systems compared to the conventional PI+PSS controller.