• Title/Summary/Keyword: distribution-free method

Search Result 561, Processing Time 0.033 seconds

Free axial vibration of cracked axially functionally graded nanoscale rods incorporating surface effect

  • Nazemnezhad, Reza;Shokrollahi, Hassan
    • Steel and Composite Structures
    • /
    • v.35 no.3
    • /
    • pp.449-462
    • /
    • 2020
  • This work aims to study effects of the crack and the surface energy on the free longitudinal vibration of axially functionally graded nanorods. The surface energy parameters considered are the surface stress, the surface density, and the surface Lamé constants. The cracked nanorod is modelled by dividing it into two parts connected by a linear spring in which its stiffness is related to the crack severity. The surface and bulk material properties are considered to vary in the length direction according to the power law distribution. Hamilton's principle is implemented to derive the governing equation of motion and boundary conditions. Considering the surface stress causes that the derived governing equation of motion becomes non-homogeneous while this was not the case in works that only the surface density and the surface Lamé constants were considered. To extract the frequencies of nanorod, firstly the non-homogeneous governing equation is converted to a homogeneous one using an appropriate change of variable, and then for clamped-clamped and clamped-free boundary conditions the governing equation is solved using the harmonic differential quadrature method. Since the present work considers effects of all the surface energy parameters, it can be claimed that this is a comprehensive work in this regard.

Effects of the Thickness of Bond Coating on the Thermal Stress of TBC (접착층의 두께가 용사 열차폐 코팅의 열응력에 미치는 영향)

  • 김형남;최성남;장기상
    • Proceedings of the KWS Conference
    • /
    • 2000.04a
    • /
    • pp.228-231
    • /
    • 2000
  • Based on the principle of complementary energy an analytical method is developed for determining thermal stress distribution in an thermal barrier coating. This method gives the stress distributions which satisfy the stress-free boundary conditions at the edge. Numerical examples are given in order to verify the method and to investigate the thickness effects of the ZrO$_2$-8wt%Y$_2$O$_3$ top coat on the integrity of thermal barrier coating consisted of IN738LC substrate and MCrAlY bond coat.

  • PDF

A Study on the Effects of the Thickness of Top Coat on the Thermal Stresses of a Sprayed Thermal Barrier Coating (용사 열차폐 코팅층의 두께가 열응력에 미치는 영향)

  • 김형남;양승한
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.223-225
    • /
    • 2004
  • Based on the principle of complementary energy an analytical method is developed for determining thermal stress distribution in an thermal barrier coating. This method gives the stress distributions which satisfy the stress-free boundary conditions at the edge. Numerical examples are given in order to verify the method and to investigate the thickness effects of the ZrO$_2$-8wt%Y$_2$O$_3$ top coat on the integrity of thermal barrier coating consisted of IN738LC substrate and MCrAlY bond coat.

  • PDF

Nonlinear dynamic analysis of porous functionally graded materials based on new third-order shear deformation theory

  • Allah, Mohamed Janane;Timesli, Abdelaziz;Belaasilia, Youssef
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.1-17
    • /
    • 2022
  • The free and forced nonlinear dynamic behaviors of Porous Functionally Graded Material (PFGM) plates are examined by means of a High-Order Implicit Algorithm (HOIA). The formulation is developed using the Third-order Shear Deformation Theory (TSDT). Unlike previous works, the formulation is written without resorting to any homogenization technique neither rule of mixture nor considering FGM as a laminated composite, and the distribution of the porosity is assumed to be gradually variable through the thickness of the PFGM plates. Using the Hamilton principle, we establish the governing equations of motion. The Finite Element Method (FEM) is used to compute approximations of the resulting equations; FEM is adopted using a four-node quadrilateral finite element with seven Degrees Of Freedom (DOF) per node. Nonlinear equations are solved by a HOIA. The accuracy and the performance of the proposed approach are verified by presenting comparisons with literature results for vibration natural frequencies and dynamic response of PFGM plates under external loading. The influences of porosity volume fraction, porosity distribution, slenderness ratio and other parameters on the vibrations of PFGM plate are explored. The results demonstrate the significant impact of different physical and geometrical parameters on the vibration behavior of the PFGM plate.

Innovation in the Assortment of Goods: Effects on Consumer Attitude for In-Flight Duty Free Items (기내 상품 유통에서 면세품 구색의 혁신: 운항거리와 승무원 이미지 효과)

  • Kim, Kyung-Jin
    • Journal of Distribution Science
    • /
    • v.12 no.10
    • /
    • pp.99-108
    • /
    • 2014
  • Purpose - The goals of this study are the following. First, this study focused on customer satisfaction of in-flight service. Specifically, in-flight duty free items were considered because of their potential value related with the differentiated strategy of airline companies. Second, this study analyzed feasible strategies that would fence off the aversive attitudes of consumers toward innovation regarding in-flight duty free items. Third, this study strived to discover implicit routes related with the reactions of of consumers to innovation. Fourth, the construal level theory was applied to the context of in-flight service. Psychological distance is expected to promote acceptance of innovation for duty free items. Research design, data, and methodology - This study consisted of three experiments. All data were collected through the participation of university students. First, the experiment employed a 2×2 between-subject design. The first independent variable was temporal distance (long vs. short of navigation time). The second independent variable was innovativeness (innovative duty free items vs. typical items). Further, experiment 2 involved a 2×2 between-subject design. The first independent variable was social distance (typical vs. atypical stewardess image). The second was innovativeness that was based on a pattern similar to that of the prior experiment. The third experiment involved a 2×2×2 design. The first and second independent variables were temporal distance and item innovation, respectively, based on the method of experiment 1. The third independent variable was cognitive depletion (depletion vs. control condition). Results - Experiment 1 demonstrated that the innovation of duty free items would need to consider the journey time of the airline. Specifically, innovative items were preferred in case of a long journey; typical items, however, were liked in a short journey. Further, experiment 2 demonstrated that, in spite of a short journey, innovative items would be preferred if an atypical stewardess was serving. An atypical stewardess was linked with social distance, and the psychological effects would activate a creative and flexible mindset that would fit with innovative duty free items. The final experiment was accomplished for the examination of cognitive processing of psychological distance on innovation-acceptance. Specifically, if the effects were related with systematic processing, then cognitive effort would be needed. In contrast, if they were related with heuristic processing, then such efforts would not be required. The same pattern appeared under both cognitive depletion and control condition; therefore, the effects of psychological distance were implied to be heuristic processing. Conclusions - Managers need to consider the navigation time, stewardess concepts, and depletion of consumers as important factors for innovative strategy regarding in-flight service. Longer journeys are more successful for innovative trials. Further, a more atypical stewardess image is more successful for atypical service. Long navigation and unfamiliar stewardesses may activate creative and flexible thinking. Further, cognitive depletion of consumers is not a dominant factor of psychological distance effects, because the effects are not related with systematic processing, but with heuristic processing.

A Study of the effective approach method for median control chart of non-normally distributed process (비정규분포공정에서 계량치관리를 위한 메디안 특수 관리도의 모형설계와 그 적용에 관한 실용에 연구)

  • 신용백
    • Journal of the Korean Professional Engineers Association
    • /
    • v.21 no.4
    • /
    • pp.19-32
    • /
    • 1988
  • Whereas is non-symmetrical distribution manufacturing process the traditional X-chart by Shewhart is not plotted relatively on the central line but plotted on the skew of upper-hand side or lower-hand side. That is to say, for the purpose of producing either upper-specification-oriented items or lower-specification-oriented items, and when we carry out tighter control so as to have them pass only its specifications, the distribution shape naturally has a non-normal distribution. In the Shewhart X-chart, which is the most widely used one in Korea, such skewed distributions make tile plots to be inclined below or above the central line or outside the control limits although no assignable causes can be found. To overcome such short comings is non-normally distributed processes, a distribution-free type of confidence interval can be used, which should be haled on order statistics. This thesis is concerned with the design of control chart based on a sample median which is easy to use in practical situation and therefore properties for non-normal distributions, such as Gamma, Beta, Lognormal, Weibull, Pareto, and Truncated-normal distributions, may be easily analyzed. To enhance this improvement, I proved the property of practical applications of control chart method by comparing and analyzing the case studies of practical application of special purpose control chart method, and also by introducing the new designed median control chart.

  • PDF

Prediction and Measurement of Residual Stresses in Injection Molded Parts

  • Kwon, Young-Il;Kang, Tae-Jin;Chung, Kwansoo;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • v.2 no.4
    • /
    • pp.203-211
    • /
    • 2001
  • Residual stresses were predicted by a flow analysis in the mold cavity and residual stress distribution in the injection molded product was measured. Flow field was analyzed by the hybrid FEM/FDM method, using the Hele Shaw approximation. The Modified Cross model was used to determine the dependence of the viscosity on the temperature and the shear rate. The specific volume of the polymer melt which varies with the pressure and temperature fields was calculated by the Tait\`s state equation. Flow analysis results such as pressure, temperature, and the location of the liquid-solid interface were used as the input of the stress analysis. In order to calculate more accurate gap-wise temperature field, a coordinate transformation technique was used. The residual stress distribution in the gap-wise temperature field, a coordinate transformation technique was used. The residual stress distribution in the gap-wise direction was predicted in two cases, the free quenching, under the assumption that the shrinkage of the injection molded product occurs within the mold cavity and that the solid polymer is elastic. Effects of the initial flow rate, packing pressure, and mold temperature on the residual stress distribution was discussed. Experimental results were also obtained by the layer removal method for molded polypropylene.

  • PDF

An efficient numerical model for free vibration of temperature-dependent porous FG nano-scale beams using a nonlocal strain gradient theory

  • Tarek Merzouki;Mohammed SidAhmed Houari
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.1-18
    • /
    • 2024
  • The present study conducts a thorough analysis of thermal vibrations in functionally graded porous nanocomposite beams within a thermal setting. Investigating the temperature-dependent material properties of these beams, which continuously vary across their thickness in accordance with a power-law function, a finite element approach is developed. This approach utilizes a nonlocal strain gradient theory and accounts for a linear temperature rise. The analysis employs four different patterns of porosity distribution to characterize the functionally graded porous materials. A novel two-variable shear deformation beam nonlocal strain gradient theory, based on trigonometric functions, is introduced to examine the combined effects of nonlocal stress and strain gradient on these beams. The derived governing equations are solved through a 3-nodes beam element. A comprehensive parametric study delves into the influence of structural parameters, such as thicknessratio, beam length, nonlocal scale parameter, and strain gradient parameter. Furthermore, the study explores the impact of thermal effects, porosity distribution forms, and material distribution profiles on the free vibration of temperature-dependent FG nanobeams. The results reveal the substantial influence of these effects on the vibration behavior of functionally graded nanobeams under thermal conditions. This research presents a finite element approach to examine the thermo-mechanical behavior of nonlocal temperature-dependent FG nanobeams, filling the gap where analytical results are unavailable.

Comparison of Potential and Viscous Codes for Water Entry Problem

  • Kwon, Sun-Hong;Park, Chang-Woo;Shin, Jae-Young
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.1
    • /
    • pp.32-36
    • /
    • 2012
  • This paper presents a comparison of potential and viscous computational codes for the water entry problem. A po-tential code was developed which adopted the boundary element method to solve the problem. A nonlinear free surface boundary condition was integrated to find new locations of free surface. The dynamic boundary condition was simplified by taking constant potential values for every time steps. The simplified dynamic boundary condition was applied in the new position of the free surface not at the mean level, which is the usual practice for linearized theory. The commercial code FLUENT was used to solve the water entry problem from the viscosity point of view. The movement of the air-liquid interface is traced by distribution of the volume fraction of water in a computational cell. The pressure coefficients were compared with each other, while experimental results published by other researchers were also examined. The characteristics of each method were discussed to clarify merits and limitations when they were applied to the water entry problems.

A Study on the Treatment of Open Boundary in the Two-Dimensional Free-Surface Wave Problems (2차원 자유표면파 문제에서의 방사조건 처리에 관한 고찰)

  • Y.H. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.80-89
    • /
    • 1992
  • This paper deals with the open boundary problems, and two numerical schemes are used for the implementation of open boundary condition. One is to add the artificial damping term to dynamic free-surface boundary condition. Determination of suitable damping coefficient and the damping cone is the most important in this scheme. The other scheme is a modified Orlanski's method. This will be useful for the problems with unidirectional waves. A few typical free-surface wave problems are modeled for the numerical test. Method of solution is fundamental source-distribution method and the fully nonlinear boundary conditions are applied. The computed results are compared with those of others for the proof of practicality of these schemes.

  • PDF