• Title/Summary/Keyword: distribution system an)

Search Result 6,324, Processing Time 0.043 seconds

Optimal Operational Strategy for Cross Docking Systems (크로스도킹 시스템의 최적 운영 전략)

  • Yu, Woo-Yeon;Cho, Chi-Woon;Yang, Jae-Kyung
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.3
    • /
    • pp.103-114
    • /
    • 2006
  • A cross docking operation involves multiple trucks (known as inbound trucks) that deliver items from suppliers to a distribution center and multiple trucks (known as outbound trucks) that ship items from the distribution center to customers. Based on customer demands, an inbound truck may have its items transferred to multiple outbound trucks. Similarly, an outbound truck can receive its consignments from multiple inbound trucks. A unique characteristic of a cross docking system is the absence or prohibition of long term storage of items at the distribution center. Items delivered to the distribution center from suppliers are shipped to customers as soon as possible without being placed in storage in the distribution center. The objective of this paper is to develop the optimal operational strategy for finding the best truck docking sequence for both inbound and outbound trucks in order to minimize total operation time where a temporary storage area is not available in a cross docking system.

Performance Improvement of an Active Neutral Harmonic Suppressor System Under Unbalanced Load Conditions

  • Choi, Se-Wan;Jang, Min-Soo
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.822-828
    • /
    • 2001
  • Three-phase four-wire electrical distribution systems are widely employed in manufacturing plants, commercial and residential buildings. Due to the nonlinear loads connected to the distribution system, the neutral conductor carries excessive harmonic currents even under balanced loading since the triplen harmonics in phase currents do not cancel each other. This may result in wiring failure of the neutral conductor and overloading of the distribution transformer. In response to these concerns, a cost-effective neutral current harmonic suppressor system has been proposed [6]. This paper proposes an improved control method for the harmonic suppressor system under unbalanced load conditions. The proposed control method compensates for only the harmonic components in the neutral conductor, and the zero-sequence fundamental component due to unbalanced loading is prevented from flowing through the harmonic suppressor system. This remedies overloading and power loss of the system. The experimental results on a prototype validate the proposed control approach.

  • PDF

Performance Improvement of an Active Neutral Harmonic Suppressor System Under Unbalanced Load Conditions

  • Choi, Se-Wan;Jang, Min-Soo
    • Journal of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.151-158
    • /
    • 2003
  • Three-phase four-wire electrical distribution systems are widely employed in manufacturing plants, commercial and residential buildings Due to the nonlinear loads connected to the distribution system, the neutral conductor carries excessive harmonic currents even under balanced loading since the triplen harmonics in phase currents do not cancel each other This may result in wiring failure of the neutral conductor and overloading of the distribution transformer In response to these concerns, a cost-effective neutral current harmonic suppressor system has been proposed. This paper proposes an improved control method for the harmonic suppressor system under unbalanced load conditions The proposed control method compensates for only the harmonic components in the neutral conductor, and the zero-sequence fundamental component due to unbalanced loading is prevented from flowing through the harmonic suppressor system This remedies overloading and power loss of the system The experimental results on a prototype validate the proposed control approach.

Distribution of strength and stiffness in asymmetric wall type system buildings considering foundation flexibility

  • Atefatdoost, Gh.R.;Shakib, H.;JavidSharifi, B.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.281-292
    • /
    • 2017
  • Architecture constraints in buildings may typically cause irregularities in the distribution of stiffness and mass and consequently causes non-compliance of centers of mass, stiffness and strength. Such buildings are known as asymmetric buildings the distribution of strength and stiffness is one of whose main challenges. This distribution is more complicated for concrete buildings with RC shear walls in which stiffness and strength are interdependent parameters. The flexibility under the foundation is another subject that can affect this distribution due to the variation of dynamic properties of the structure and its constituting elements. In this paper, it is attempted to achieve an appropriate distribution pattern by expressing the effects of foundation flexibility on the seismic demand of concrete shear walls and also evaluate the effects of this issue on strength and stiffness distribution among lateral force resistant elements. In order to understand the importance of flexibility in strength and stiffness distribution for an asymmetric building in different conditions of under-foundation flexibility, the assigned value to each of the walls is numerically calculated and eventually a procedure for strength and stiffness distribution dependencies on flexibility is provided.

A Study on the Agent (Protective Device)-based Fault Determination and Separation Methodology for Smart Grid Distribution System

  • Ko, Yun-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.102-108
    • /
    • 2015
  • This paper proposes a new fault isolation methodology for a smart protective device which plays an agent role on the smart grid distribution system with the distributed generation. It, by itself, determines accurately whether its protection zone is fault or not, identifies the fault zone and separates the fault zone through the exchange of fault information such as the current information and the voltage information with other protective devices using bi-directional communication capabilities on the smart grid distribution system. The heuristic rules are obtained from the structure and electrical characteristics determined according to the location of the fault and DG (Distributed Generation) when faults such as single-phase ground fault, phase-to-phase short fault and three-phase short fault occur on the smart grid distribution system with DG.

Distribution Network Switching Automation Using Active Web Based Management

  • Choi, Sang-Yule
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.9
    • /
    • pp.81-86
    • /
    • 2007
  • Electric utility companies have the responsibility of providing good electricity for their customers. They have introduced the DAS(Distribution Automation System) to automate the power distribution networks. DAS engineers require state-of-the-art applications, such as a way to actively manage the distribution system and gain economic benefits from a flexible DAS architectural design. The existing DAS is not capable of handling these needs. It requires operator intervention whenever feeder overloading is detected while operator error could cause the feeder overload area to be extended. It also utilizes a closed architecture and it is therefore difficult to meet the system migration and future enhancement requirements. This paper represents a web based, platform-independent, flexible DAS architectural design and active database application. Recent advanced Internet technologies are fully utilized in this new DAS architecture allowing it to meet the system migration and future enhancement requirements. By using an active database, the DAS can minimize the feeder overloading area in the distribution system without operator intervention, thereby minimizing mistakes due to operator error.

The Construction of Tree-structured Database and Tree Search Strategies in Distribution Systems (트리구조의 배전계통 데이타베이스 구성과 트리탐색기법)

  • Kim, S.H.;Ryu, H.S.;Choi, B.Y.;Cho, S.H.;Moon, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.172-175
    • /
    • 1992
  • This paper proposes the methods to construct the tree-structured database and analyze the distribution system network. In order to cope with an extensive amount of data and the frequent breaker switching operations in distribution systems, the database for system configuration is constructed using binary trees. Once the tree-structured database has been built, the system tracing of distribution network can be rapidly performed. This remarkably enhances the efficiency of data search and easily adapts to system changes due to switching operations. The computation method of fast power flow using tree search strategies is presented. The methods in the paper may be available in the field of distribution system operation.

  • PDF

The Analysis of Voltage Variations at Distribution System Interconnected Multiple PV Systems (다수 PV 시스템 배전계통 연계 시 전압변동 분석)

  • Kang, Chul;Shin, Hee-Sang;Cho, Sung-Min;Moon, Jong-Fil;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.177-178
    • /
    • 2008
  • Recently, the concern of PV(Photovoltaic) systems has increased because of an environmental problem and limitation of fossil fuel. In this paper, distribution system of existing one-way power flow and distribution system generating bidirectional power flow analyze voltage variation at distribution system interconnected multiple PV systems. Also, we analyze a supply voltage range of distribution system using LDC and ULTC voltage regulation method by case study.

  • PDF

An Improvement of Optical Fiber Composite Power Cable On-Line Monitoring System for Underground Distribution Network (지중 배전계통 적용을 위한 광복합 케이블 실시간 감시시스템 개선)

  • Cho, Jin-Tae;Kim, Ju-Yong;Lee, Hak-Ju;Park, Jung-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.7
    • /
    • pp.77-83
    • /
    • 2012
  • Since power system is switching to smart grid, on-line monitoring technology has become necessary for underground distribution power cable. Therefore, the application of DTS(Distributed Temperature Sensing) technology using OFCPC(Optical Fiber Composite Power Cable) capable of monitoring underground distribution power cables has been developed. These can bring about reductions in faults and increases in operating capacity of underground distribution system. To date, the test-bed of optical fiber composite power cable on-line monitoring system has been constructed. Then, matters to be improved have been drawn through verification experiments. This paper presents the improvement and experiment results of the optical fiber composite power cable on-line monitoring system to apply to underground distribution lines in the field.

QUEUEING ANALYSIS OF GATED-EXHAUSTIVE VACATION SYSTEM FOR DBA SCHEME IN AN EPON

  • HAN DONG HWAN;PARK CHUL GEUN
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.547-557
    • /
    • 2005
  • In this paper, we investigate the packet delay distribution of a dynamic bandwidth allocation(DBA) scheme in an Ethernet passive optical network(EPON). We focus on the gated-exhaustive vacation system. We assume that input packets arrive at an optical network unit(ONU) according to general interarrival distribution. We use a discrete time queueing model in order to find the packet delay distribution of the gated-exhaustive system with the primary transmission queue and the secondary input queue. We give some numerical examples to investigate the mean packet delays of the proposed queueing model to analyze the DBA scheme in an EPON.